1. Momentum	A. $\mathrm{p}_{\mathrm{f}}-\mathrm{p}_{\mathrm{i}}$.
2. Impulse	B. Equal to $\Sigma \mathrm{p}$.
3. $\Delta \mathrm{p}$	C. It is important to know how big and in
what direction.	
4. Vector	D. How an object changes momentum.
5. Magnitude	E. The " $25 "$ in $25 \mathrm{kgm} / \mathrm{s}$.
6. $\mathrm{p}_{\text {net }}$	F. The product of mass and velocity.

7. A bowling ball at rest or a bowling ball going $1 \mathrm{~m} / \mathrm{s}$?
8. Afast baseball or a slow bowling ball?
9. A 1000 kg object at rest or a 1 kg object moving $0.2 \mathrm{~m} / \mathrm{s}$?

Above shows an object at different positions.
10. Calculate the object's momentum at position A .
11. Calculate Δv between positions A and B.
12. Can an object have momentum in space?
11.If you increase a moving object's mass, how does its momentum change?
13. If an object changes momentum there must be a change of
\qquad or \qquad -.
14. How can momentum be negative?
15. How can an object have the same speed and mass, but change its momentum?
16. How can multiple objects have a net momentum of zero?

17. Calculate $\Delta \mathrm{p}$ between positions B and D.
18. Calcu-
19. Find the net momentum of the following:
20. Find the p_{x} and p_{y} of the following object.
21. A 4 kg object is moving $2 \mathrm{~m} / \mathrm{s}$ to the right. A 6 N force pushes to the left for 3 seconds.
A. Calculate $p_{\text {before }}$.
