Name:	

Period:

Ionic Compounds

Ion Charges Add

An ion is an atom with a positive or negative charge because it has gained or lost electrons. As ions add together, so do their charges.

Oxidation Numbers

$$Na^{1+} + Na^{1+} = 2 + charge$$

So $Na_2^{1+} = 2 + charge$

Each Sodium atom gives up 1 electron, so 2 Sodium atoms (Na₂) will give up 2 electrons and have a charge of 2+.

Opposites Ions Attract

Just as with protons and electrons: oppositely charged atoms attract. Positive ions (metals) attract negative ions (nonmetals), forming ionic compounds.

Positive ions attract Negative ions

$$\underset{\textit{ion of } 2+}{\textit{Positive}} \ Mg^{2+} \overset{\textit{attracts}}{\longleftrightarrow} \ F^{1-} \ \underset{\textit{ion of } 1-}{\textit{Negative}}$$

Ions make
$$ionic$$
 \longrightarrow MgF_2 compounds. Two F^{1-} for every

Magnesium Fluo-

Balanced Ionic Compounds

Ionic compounds always combine in a particular ratio (same number of each

Sample from page 1 "Ionic 3no3" Unit 3no3 Compounds"

electron $-C1^{1-}$

... 2 Chlorines Mg^{2+} \longrightarrow Cl^{1-}

Magnesium Chloride: MgCl₂ (a 1:2 ratio)

Magnesium Sulfide: MgS Mg^{2+} Loses 2 S^{2-} Gains 2

How to Balance Ionic

- Step 1: Write the symbols for each element.
- Step 2: Write the oxidation numbers on each symbol.
- Step 3: Balance so the # of electrons lost = # gained. If you need to, use visual aid like Lewis Dot Diagrams or Electron Arrows to help you.

Ex. Find the balanced ionic formula for Calcium Bromide.

Step 1: Ca Br Step 2: $Ca^{2+}Br^{1-} = 1+$ Not balanced: $A = A + Br^{1-}$ Not balanced: $A = A + Br^{1-}$

Step 3: $Ca^{2+}Br_2^{1-}=0$ Balanced! **Calcium Bromide is** ALWAYS: CaBr₂