A-day: Due Wed., May 26 B-day: Due Thurs, May 27

2009-10 Magnetism 5

Name: _____

I cannot put everything on one homework. What was covered on Magnetism 5 will not be covered on this homework. Also, there is enough information on Transformers in the notes and the website. I won't go over it again.

- 1. Two current carrying wires are shown at the left. They have current flowing in the same direction.
 - A. Below wire 1, which direction does wire 1's magnetic field point?
 - B. Above wire 2, which direction does wire 2's magnetic field point?
 - C. So, do the wires attract or repel each other?
- 2. Two current carrying wires have current flowing in opposite directions. Will they be attracted or repelled by each other?

3.	Electrons have a negat	ive c	Protons have a positive c	Neutron have a no c
4.	What is electricity?			
5.	A moving c	_ feels a m	force. Moving e	causes m
6.	So, what causes both electricity and magnetism?			

- 7. (From "Magnet" notes) On the atomic level, what causes magnetism?
- 8. If the atomic magnets line up in the same direction, is the substance magnetic?

From your book (we have a book?) or the Internet, etc...

- 9. Where does the Earth's magnetic field come from?
- 10. How does the Earth's magnetic field protect us here on Earth?

- 11. A. Use the compass at the left to decide which side is N and S. The wire is pulled to the left by an external force.
 - B. Is the magnet moving the wire?
 - C. So, what part of the right hand rule (RHR) is the moving wire?
 - D. Which direction does the magnetic field point?
 - E. Which direction will the magnetic force be in the wire?
 - F. Which direction will the induced current be?
- 12. Scientists need to determine the charge of a particle, so they project it (shoot it) into a magnetic field. By watching its path, they will know its charge.
 - A. ___Which path would prove it is negatively charged?
 - B. ___Which path would prove it has no charge?
 - C. ___Which path would prove it is positively charged?

This is one way that scientists can determine the charge of a particle. The picture at the left is that of "pair production", when an electron and a positron (an anti-electron) are formed in a nuclear accelerator. (I don't know which is which because I don't know the direction of the magnetic field.) The two particles have equal mass (more mass would be a much larger spiral path), but you can see by the opposite paths that they have opposite charges. The positron is the antimatter particle of an electron.

2009-10 Magnetism 5—p2

13. Attracted to a magnetic: yes or no?

A. ___Aluminum F. ___A current carrying wire.
B. __Steel G. __A moving charge.
C. __A penny H. __Another magnetic
D. __A compass I. __Iron

14. Permanent magnet, temporary magnet, electromagnet?

E.____A copper wire with no electricity flowing.

a committee imagnet, temperary imagnet, erect emagnet.	
AA piece of iron when next to a magnet.	CLoops of wire when electricity is flowing.
BWill not lose its magnetism.	DCan have its poles switched by a second magnet

15. Use the diagram at the right to answer the following.

A. The coils of wire is called a: ______.

B. If positive current flows into A and out B, which side is North?

C. If positive current flows into B and out A, which side is North?

D. So, when the current flowing thru the wires is reverse, the direction of the magnetic field is r_____.

E. Where is the magnetic field the strongest: inside the center of the coils; at the opening; on the side of the coils?

- 16. A bar magnet is split in half. Each of the two halves is also halved.
 - A. Label each of the bars.

J. _____ A charge at rest (a stationary charge).

B. So, how small would one of the bars have to be to have just a single North or single South pole?