Name: \qquad
Period: \qquad

Electricity In Class Review

Electricity In Class Review

17. A. Electricity is moving \qquad .
B. Why can't protons move?
18. Voltage \qquad , current \qquad , and resistance \qquad the flow of current.
19. Ammeter, voltmeter, or ohmmeter?
A. Meter A:
B. Meter B:
C. Meter C:
D. Meter D:
E. Meter E:
F. What does Meter A read?
G. What does Meter D read?
H. What does Meter B read?
I. What does Meter E read?

20. Use the circuit at the left to answer the following.
A. Is it a series or parallel circuit?
B. If the 10Ω resistor is replaced with a wire, how would the current change?
C. If one of the batteries is replaced with a 3 V battery, how would the current change?
D. $\mathrm{I}_{\text {total }}=$
E. What is the voltage used by the 10Ω resistor?
F. $\quad \mathrm{V}_{\mathrm{at}}$?
G. $P_{\text {used by the } 8 \Omega}$?
21. Use the circuit at the right to answer the following.
A. Is it a series or parallel circuit?
B. $\mathrm{V}_{\text {difference from } \mathrm{B} \text { to } \mathrm{E}}=$
C. What is the total resistance between points D and K (branch 1)?
D. $I_{\text {thru point } G}=$
E. If the 4Ω resistor was replaced by a wire, how would the total current change?
F. If branch 3 was broken at point H , how would the current flowing thru the 4Ω resistor change?

G. $I_{\text {from } \mathrm{J} \text { to } \mathrm{K}}=$
H. $\mathrm{I}_{\text {total }}=$
I. $\quad \mathrm{R}_{\text {total }}=$
K. $\mathrm{P}_{\text {total }}=$
J. $\mathrm{V}_{\text {at point } \mathrm{G}}=$

Name: \qquad
\qquad

Electricity In Class Review

1. A) A $24 \mu \mathrm{C}$ charge and a $-1.2 \mu \mathrm{C}$ are 6 mm away from each other. Calculate the force between them.
$F=9 \times 10^{9} \frac{\left(24 \times 10^{-6}\right)\left(1.2 \times 10^{-6}\right)}{.006^{2}}=7200 \mathrm{~N}$
B) Will the two charges attract or repel each other?
C) If the $24 \mu \mathrm{C}$ charge touches ground what will happen? electrons flow to it from ground
D) If the distance between them is doubled, by how much does the force change? $1 / 4 \quad(r$ is $s q$.)
E) If one of the charges was halved, by how much does the force change? $1 / 2$
2. By the direction of the electric field, decide if the charges are positive or negative. a titract
3. When do two charges attract each other?
opp. charges

4. A positively charged rod is brought close to a conducting sphere.
A. Did the rod gain of lose electrons?
B. Which side of the sphere will be negative? left

5. Comparing circuits to water: resistor, battery, switch, wire, light bulb, diode, or capacitor?
A. battery A water pump.
B. wive A pipe.
C. Switch A valve or faucet.
D. light A water wheel (does something useful).
E. $\operatorname{cap} C$, A water tower (gives temporary pressure).
F. resist A restriction in a pipe.
G. diode A one-way valve.
6. Slim Jim falls off of a building and grabs onto a power line to save himself.
A. Give two reasons why he is safe.

1) Both hands are at the same voltage, so no voltage difference. 2) wire is less resistance than Jim (short circuit)
B. Why would touching the ground be bad?

Then there is a difference of voltage -ouch!
15. Fuse or circuit breaker?
A. $C B$ Can be reset.
B. Both Protects against too much current.
C. Fuse Must be replaced.
2. If an object is negative, did it gain or lose electrons?
3. How much charge do 25 electrons have?

$$
\frac{25 e}{1}\left(\frac{-1.602 \times 10^{-19}}{1 e}\right)=-4 \times 10^{-18} \mathrm{C}
$$

4. An object has a charge of $-3.2 \mu \mathrm{C}$ object. How many electrons did it gain or lose?

5. Why can an object not gain a charge equal to 15.6 electrons?
cant have part of
6. A. Will the two charges attract of repel each other?
B. To increase the potential energy between the two
 charges, should you pull them apart or push them together?
7. Decide which of the wires has the most resistance.
A. A wire at $5^{\circ} \mathrm{C}$ OR a wire at $15^{\circ} \mathrm{C}$. not ter
B. A thick 2 m wire OR a thick 2 cm wire. longer-
C. A thick 2 cm long wire OR athim 2 cm long wire?
D. A wire made of silver OR a wire made of copper?
8. What do we call a substance with no resistance at very low temperatures? super conductor
9. Draw a circuit with 2 batteries, a switch, and two light bulbs in series.

10. Which switches would need?

Electricity In Class Review

17. A. Electricity is moving electrons . B. Why can't protons move?

Trapped in nucleus by strong nuclear force.
18. Voltage \qquad pushes current \qquad flows , and resistance restricts the flow of current.
19. Ammeter, voltmeter, or ohmmeter?
A. Meter A: vo its
B. Meter B: ammeter
C. Meter C: volts
D. Meter D: ammeter
E. Meter E: ohmmeter
F. What does Meter A read? $6 V$
G. What does Meter D read? $1,5 \mathrm{~A}$
H. What does Meter B read? 3.75 A
I. What does Meter E read? $q \Omega$

21. Use the circuit at the right to answer the following.
A. Is it a series or parallel circuit?
B. $\mathrm{V}_{\text {difference from } 2 \text { to } 5}=9 \mathrm{~V}$
C. What is the total resistance between points 4 and 11 (branch 1)? 6Ω
D. $\mathrm{I}_{\text {thru point } 8}=3 \mathrm{~A}$ placed by wive
E. If the 4Ω resistor was'removed, how would the total current change? incre sse
F. If branch 3 was broken at point 7 , how would the current flowing thru the 4Ω resistor change? no change
20. Use the circuit at the left to answer the following.
A. Is it a series or parallel circuit?
B. If the 10Ω resistor is removed, how would the current change?
increase everywhere
C. If one of the batteries is replaced by a 3 V battery, how would the current change? decrease everywhere
D. $\mathrm{I}_{\text {total }}=, 57 \mathrm{~A}=12 / 21$
E. What is the voltage used by the 10Ω resistor?
5.7 volts $=I R$
F. $\quad V_{a t} ? \quad 12-5.7=6.3 v$
G. $P_{8 \Omega}$? $=V_{I} I$

$$
\begin{gathered}
V=I R=.57(8)=4,56 \\
P=4,56(57)=2.6 \mathrm{w} \\
V=I R=3(4) \\
(=120
\end{gathered}
$$

G. $I_{\text {from } 10 \text { to } 11}=7.5 \mathrm{~A}$
H. $\mathrm{I}_{\text {total }}=10.5 \mathrm{~A}$
I. $\mathrm{R}_{\text {total }}=1.71 \Omega$

$$
V=I R \quad \mid r=10.5(R) \quad \text { K. } P_{\text {total }}=V I
$$

J. $\quad V_{\text {at point } 8}=6 V$

