Name: ___

 The circuit at the left shows a capacitor like the red plastic one you used in the circuit boards. The switch can be switched between point S and point T. The switch is first put to point S. Then the switch is moved to point T. Describe what happens.

Use the notes: "Power and Voltage Drops".

- 2. A. What is the current flowing in the circuit?
- B. What will happen to the fuse?
- C. Can you reset a fuse?
- D. What could you use that could be reset?
- E. Give one way that you could fix the circuit so that the fuse will not blow.

- 3. Identify the pictures.
 - A.____Resistor.
 - B.____Diode C.____Fuse
- D. ____ Capacitor E. ____ Variable resistor

M

- E. _____ Variable resistorF. _____ Light emitting diode.
- G. ____ Can protect a circuit from too much current.
- H. _____ Only lets the current flow one way.
- I. ____ Stores charge temporarily.
- J. _____ Used by an oven to change temperature.

4. Using the "Electric Fields" notes, identify the charges above.

Use your "Series Circuit Lab" to answer the following.

- 6. Each of the four circles in the circuit at the left are meters. In each of the circles put one of the following: Ammeter (A); Ohmmeter (O); Voltmeter (V).
- 7. A. What is the total voltage of the circuit?
 - B. What is the total resistance of branch 1?
 - C. How much current flows thru branch 1?
 - D. How much current is flowing thru branch 2?
 - E. What is the total current of the circuit?
 - F. How much voltage does the 1Ω resistor use?
 - G. What is the total power used by the circuit?

- 5. A. Do the above charges attract or repel?
 - B. Thinking of them like a spring, to increase the potential energy of the two charges should they be pulled apart or brought closer together?

- 8. Which switches would you turn close for each of the following?
 - A. For only resistor 1 to be on.
 - B. For only resistor 3 to be on.
 - C. For only resistors 1 and 3 to be on.
- 9. For each of the following pairs, circle the one with the greatest resistance.
 - A) A 25 Ω resistor at 5°C or at 25°C?
 - B) A 5 cm wire or a 5 meter wire?
 - C) Thick wires or thin wires?
 - D) Aluminum wires or Copper wires?
 - E) Silver wires or wires made with a superconductor?
- 10. For each of the following examples decide if they are in parallel or series and calculate the total resistance.

- A. Parallel or series? R_{total} = _____
- B. Parallel or series? $R_{total} = ___$

- 11. Given these three resistors: 20Ω , 50Ω , and 10Ω .
 - A. What is the total resistance if they are in series?
 - B. Which of the following is the total resistance in parallel: 80Ω ; 30Ω , 5.9Ω .
 - C. Why?

From the lab:

- 12. A 3 Ω light bulb and a 5 Ω light bulb are in a circuit.
 - A. If two bulbs are in series the have the same ____
 - B. If in series which one is brighter?
 - C. Why?
 - D. If in parallel, which one is brighter?
 - E. Why?
- 13. A. What is the total resistance of branch 1?
 - B. What is the current flowing thru branch 1?
 - C. What is the current flowing thru the 9Ω ?
 - D. How much voltage does the 9Ω use?
 - E. How much current flows thru the 4Ω ?
 - F. What is the total resistance of branch 3?
 - G. What is the current flowing thru the 6Ω ?
 - H. How much voltage does the 6Ω use?
 - I. How much voltage is left at point G?
 - J. How much current flows from I to J?
 - K. What is the total current of the circuit?
 - L. Calculate the total power of the circuit?

DNA - Found in the nucleus of all cells. Contain the characteristics of a cell.

RNA has only 1 side. It has Uracil instead of Thymine.

- 14. A. On the diagram at the right circle each individual nucleotide.B. How many nucleotides are there in the diagram?
- 15. DNA, RNA (could be both).
 - A. _____ Contains nitrogen bases.
 - B. _____ Found in the nucleus of a cell.
 - C. ____ Double helix structure.
 - D. _____ A goes with T
- 16. Given the following genetic codes give the paired sequence.

DNA	RNA	 DNA	DNA
А		Т	
С		G	
G		С	
G		G	
Т		А	

Gametes—Egg or sperm; has only 1/2 the chromosomes of a full cell. Zygote—fertilized egg. Has the full set of chromosomes. Mitosis—Cell division for regeneration (exact copies to replace aging body cells). Meiosis—Cell division for sexual reproduction: produces gametes (egg or sperm).

_Has a sugar on its side.

Has ribose as a sugar

Has a phosphate backbone

Has uracil

E.

F.

G.

H.

DNA Mutation—Occurs when the nitrogen base sequence is copied wrong. Doesn't cause a permanent mutation unless it occurs in the gametes and is passed on to the offspring.

- 17. Will it cause a mutation of the species?
 - A. _____ A gene mutation occurs when a skin cell is replicated.
 - B. _____ A mutation happens during meiosis.
 - C. _____ If the sequence is copied perfectly.
 - D._____ If the sequence is off by one nitrogen base when making a sperm cell.
 - E. _____ If the mutation occurs during mitosis.
 - F. _____ If the mutation ends up in a gamete cell.
- 18. If the gamete cell has 28 chromosomes, how many chromosomes are in the zygote?