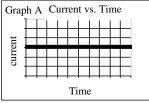
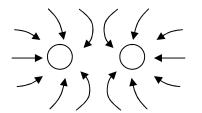

2010 Electricity 10

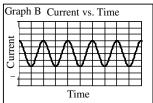
- 1. A. For the rod to be negative did it gain or lose electrons?
 - B. Which side of the metal sphere will be positive?
 - C. If the rod is touched to ground, would it gain or lose electrons?
- 2. A. Do the above charges attract or repel each other?
 - B. To increase the potential energy of the objects would you move them closer or farther apart?

3. AC (alternating current) or DC (direct current)?


A. ____ Current that changes polarity.

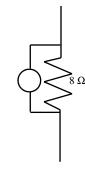
D. ____ What comes from the power outlet.

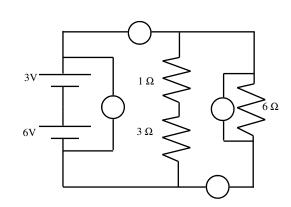

B. ____ Current that is constant. C. ____ What comes from a battery.

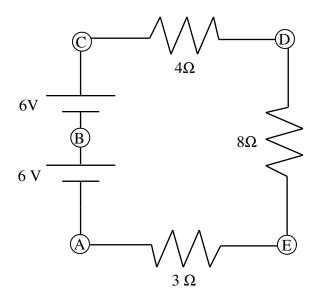

E. ____ Graph A

F. ____ Graph B.

- Identify the signs of the two charges.
- 5. Why is a bird not electrocuted when it lands on a high voltage wire?

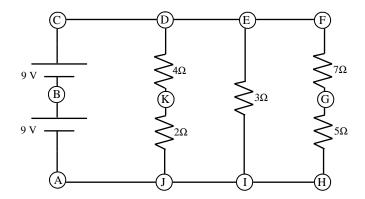





- 6. How does the force change?
 - A. If the distance between two charges is doubled?
 - B. If the distance between two charges is tripled?
 - C. If one of the charges is halved?

- D. If the distance between two charges is halved?
- E. If one of the charges is four times as big?
- Does the resistance of the wire increase or decrease?
 - A. If the wire is made shorter?
 - B. If the wire is heated (becomes hotter)?
 - C. If the wire is replaced with a thinner wire?
- D. If the voltage is increased?
- E. If the wire is replaced with a superconductor?

- A 4μ C charge is 3cm from a -2C charge.
 - A. Do they attract or repel each other?
 - B. Find the force between them.
 - C. How many electrons were gained or lost by the 4C charge?
- 9. Identify each of the meters at the right as an ammeter (A), ohmmeter (O), or voltmeter (V).
- 10. What is electricity (what is or is not moving)?
- 11. Very simply, what is voltage, current, and resistance?



- 12. After working the circuit at the left, answer the following. A. Are the batteries in parallel or series?
 - B. What is the total resistance (R_{total}) ?
 - C. What is the total current (I_{total}) ?
 - D. How much voltage is used by the 8Ω resistor?
 - E. How much power is used by the 4Ω resistor?
 - F. What is the total power used by the circuit (P_{total}) ?

 $BIG\ NOTE$: We all know that the voltage at the bottom of the first battery (letter A above and below), is 0 volts. This is our reference point. When we say that point C above is 12 volts we actually mean: "12 volts above letter A". It is always the difference of voltage that matters. " $V_{A\ to\ C}$ " means "what is the difference of voltage between points A and C".

- 13. After working the circuit at the left, answer the following.
 - A. $V_{total} =$
 - B. $V_{at A} =$
 - C. $V_{atC} =$
 - D. $V_{at F}$ =
 - E. $V_{C \text{ to } F}$ = (The difference in voltage between C and F) =
 - F. $I_{thru\ point\ K} =$
 - G. I thru the 5Ω resistor =
 - H. $I_{\text{from I to J}} =$
 - I. $V_{used by the 2\Omega resistor} =$
 - J. $P_{used by the 3\Omega resistor} =$
 - K. P_{total}=

Transcription: Process in which DNA is copied into mRNA. (*Before it can <u>ride it must transcribe.</u>*)

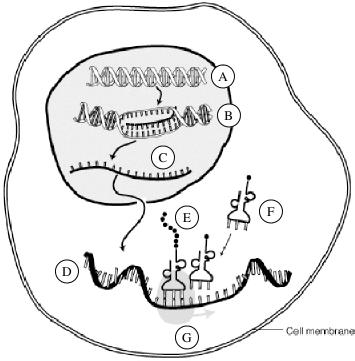
Translation: Process in which proteins are made from tRNA. (*Before it can <u>create it must translate.</u>*)

Ribosomes: Cell organelle where proteins are created.

Amino Acids: Building blocks of proteins.

Codon: Three base code that tells the ribosome what amino acid to make. Ex. AGA

2010 Electricity 10—p3


14.	Translation	(TL	or'	Transcri	ption ((TS))?
-----	-------------	-----	-----	----------	---------	------	----

A.		When	mRNA	is	turned	into	tRNA.
----	--	------	------	----	--------	------	-------

B. ____ When DNA is turned into mRNA. D. ____ Occurs at the ribosomes.

C Occurs in the nucle

15. The three nitrogen base code that tells the r_____ which a____ a___ to make is called a:

- 16. The picture at the left shows the steps in protein synthesis in an animal cell.
 - A. The double coiled molecule at letter A is called the
 - B. The double coiled molecule is unzipping and giving its code to the single stranded molecule at letter B. This single stranded molecule is the _____.
 - C. The process in which molecule A becomes molecule C is called t_____.
 - D. Molecule F is called the _____.
 - E. When D becomes F is called t____
 - F. Letter E shows the chaining of amino acids to make a
 - G. Two of the major organelles are shown in grey.
 - i. A, B, and C are in the _____.
 - ii. G shows the _____.
 - 17. From the codon chart below, what amino acid comes from the codon: CAG?

Second Nitrogen Base (2nd letter)

First Nitrogen Base (1st letter)			U	С		Α		G		
	U	UUU	Phenylalanine	UCU	Serine	UAU	- Tyrosine	UGU	Cysteine	U
		UUC	Filefiyialariirle	UCC		UAC		UGC		С
		UUA	Leucine	UCA	Serille	UAA	Ochre	UGA	Opal	Α
		UUG	Leucine	UCG		UAG	Amber	UGG	Tryptophan	G
	С	CUU		CCU	Proline	CAU	- Histidine	CGU	- Arginine -	U
		CUC	Leucine	CCC		CAC		CGC		С
		CUA	Leucine	CCA	FIOIIIIE	CAA	Glutamine	CGA		Α
		CUG		CCG		CAG		CGG		G
	A	AUU	Isoleucine	ACU	Threonine	AAU	- Asparagine -	AGU	Serine - Arginine	U
		AUC		ACC		AAC		AGC		С
ž Z		AUA		ACA	Tilleonine	AAA		AGA		Α
Firs		AUG	Methionine	ACG		AAG		AGG		G
	G	GUU		GCU	Alanine	GAU	- Aspartic acid -	GGU	Glycine	U
		GUC	Alanine	GCC		GAC		GGC		С
		GUA	Alaillile	GCA	Alaillile	GAA		GGA		Α
		GUG		GCG		GAG		GGG		G

Third Nitrogen Base (3rd letter)