Name: \qquad
Period: \qquad

Day 18- The Law of Conservation of Mass

How to read chemical reactions:

The 3 is a subscript ("sub" means under). It means there are three Lithium atoms in each molecule.

$$
2 \mathrm{~K}_{3} \mathrm{~N}+3 \mathrm{CaCrO}_{4} \rightarrow \mathrm{Ca}_{3} \mathrm{~N}_{2}+3 \mathrm{~K}_{2} \mathrm{CrO}_{4}
$$

1. Circle the second reactant. Underline the first product.
2. How many potassium atoms on the reactant side?
3. How many oxygen atoms on the product side?

During chemical reactions atoms are recombined into different chemicals, but no atoms are gained or lost. Sometimes liquids and solids can react and form invisible gases, but even when you can see the products-they are still there.

Before: 54 grams

Mass seems After: to be lost. 51 grams

3 grams escaped the open reaction.
6. A. Is this an open or closed reaction?
B. Will the mass of his products be greater than, less than, or equal to his reactants?
C. Why?
4. Write the following in reaction notation:
$3 \mathrm{Be}_{2} \mathrm{Br}$: \qquad $2 \mathrm{AlCl}_{3}:$ \qquad $4 \mathrm{Fe}_{2} \mathrm{O}_{3}$: \qquad
5. What coefficient produces the given reaction notation:

$$
\mathrm{O}_{2}=\mathrm{O}_{4} \quad \quad \mathrm{Li}_{3} \mathrm{~N}=\mathrm{Li}_{12} \mathrm{~N}_{4} \quad \quad \mathrm{CO}_{2}=\mathrm{C}_{3} \mathrm{O}_{6}
$$

The Law of Conservation of Mass states: in any closed reaction the total amount of mass stays the same.

$$
\begin{array}{ccc}
\mathrm{MgCl}_{2} & +\mathrm{Li}_{2} \mathrm{O} \rightarrow \mathrm{MgO}+2 \mathrm{LiCl} \\
35 \mathrm{~g} & 11 \mathrm{~g} & 26 \mathrm{~g} \quad ? \mathrm{~g}
\end{array}
$$

Since mass must be $35+11=26+?$ conserved, 20 g of LiCl $46=26+?$ must have been produced $46-26=$? in this reaction. $?=20$

$$
\begin{array}{cc}
4 \mathrm{~K}+\mathrm{O}_{2} \rightarrow 2 \mathrm{~K}_{2} \mathrm{O} \\
25 \mathrm{~g}+5 \mathrm{~g} & ? \mathrm{~g}
\end{array}
$$

7. How much potassium oxide is produced in this reaction?

When balancing chemical reactions remember that subscripts cannot be changed and that coefficients multiply.	8. Balance the following reactions:
$\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O} \quad \begin{aligned} & \text { NOT BALANCED } \\ & \text { (more O's on left) } \end{aligned}$	$\ldots \mathrm{Fe}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{Fe}_{2} \mathrm{O}_{3}$
$\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \underset{\mathrm{H}_{4} \mathrm{O}_{2} \longleftarrow}{2 \mathrm{H}_{2} \mathrm{O}} \begin{aligned} & \begin{array}{l} \text { Write reaction } \\ \text { notation under } \\ \text { as you change } \\ \text { coefficients. } \end{array} \end{aligned}$	$\mathrm{NH}_{3} \rightarrow \ldots \mathrm{~N}_{2}+\ldots \mathrm{H}_{2}$
BALANCED	$工_{-} \mathrm{NH}_{3}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{NO}+\ldots \mathrm{H}_{2} \mathrm{O}$
Treat polyatomic ions (like the CrO_{4} below) as a single element unless the ion is broken up on one side.	
Unbalanced: $\mathrm{K}_{3} \mathrm{~N}+\mathrm{Ca}\left(\mathrm{CrO}_{4}\right) \rightarrow \mathrm{Ca}_{3} \mathrm{~N}_{2}+\mathrm{K}_{2}\left(\mathrm{CrO}_{4}\right)$	
$\begin{array}{rlll} \text { Balanced: } & 2 \mathrm{~K}_{3} \mathrm{~N}+3 \mathrm{Ca}\left(\mathrm{CrO}_{4}\right) \rightarrow & \mathrm{Ca}_{3} \mathrm{~N}_{2}+3 \mathrm{~K}_{2}\left(\mathrm{CrO}_{4}\right) \\ \mathrm{K}_{6} \mathrm{~N}_{2} & \mathrm{Ca}_{3}\left(\mathrm{CrO}_{4}\right)_{3} & \mathrm{Ca}_{3} \mathrm{~N}_{2} & \mathrm{~K}_{6}\left(\mathrm{CrO}_{4}\right)_{3} \end{array}$	

