2009-10 Harmonic Motion 3

200

k =

From the "Spring-Mass Systems" Notes:

- 1. Two springs are attached as seen in the diagram. One spring has a k = 50 N/m the other has a k = 30 N/m.
 - Which spring on the diagram is the stronger spring (harder to stretch)?
 - B. Label the diagram with the correct spring constant for the correct spring.
 - C. _____ Which one will move the mass easier?
 - D. _____ Which one will have the faster period?
 - E. What are two ways you could make spring B move faster?
- Use the positions on the graphic at the right to answer the following. The dashed line shows where the mass will eventually stop moving.

- B. ____ Where the spring is compressed.
- C. ____ Where the spring is stretched.
- D. _____ Where x = 0.
- E. ____ Where Ep is a maximum.
- F. ____ Where Ek is a maximum.
- G. _____ Where the force is a minimum

 H. ____ Where the acceleration is a maximum.

The formula for period of a spring is on the "Spring-Mass System" notes and on the "Harmonic Motion Basics" table.

Remembering that 1000 g = 1 kg, what is the period of a spring that has a 400 g mass and a spring constant of 120 N/m?

Example: A spring-mass has a spring constant of 12 N/m. If it has a period of 1.6 seconds, how much mass is attached to the spring?

A spring-mass system has a period of 2.5 seconds and a spring constant that is 65 N/m. How much mass is attached? How to do the math is shown here:

Spring A; k = 40 N/m

Spring B; k = 20 N/m

Spring C; k = 20 N/m

- The spring-mass systems shown at the left show their left and right-most positions.
 - Which spring has a faster period: A or B? A.
 - B. What is different about springs B and C?
 - C. ____ Which spring has a faster period: B or C?
 - D. What is different about springs C and D?
 - E. ___ Which spring has a faster period: C or D?
 - F. __ Which spring has a faster period: A or D? (*Hint: use the formula.*)
 - What is the amplitude of spring D?
 - H. If spring C has a period of 0.33 seconds, calculate its frequency.

A force of 18 N causes a spring to stretch 76 cm. (Remember to be in meters!) Use Hooke's Law to calculate the spring constant for this spring.

- 7. Use the diagram at the right to answer the following.
 - A. What is the mass in kg?
 - B. What is the weight of the object?

- C. How far did the spring stretch in meters?
- D. Calculate the spring constant for this spring.

Remember again that the period is how long for 1 cycle OR T = #seconds/#cycles. The frequency is how many cycles occur each second OR f = #cycles/#seconds.

And now for a little "Harmonic Motion Basics" table scavenger hunt... (Get out the notes.)

- 14. On the graph at the right...
 - A. What is the wavelength of the wave?
 - B. Mark a trough and a crest.
- 15. For sound, how many decibels is twice as loud?
- 16. If a sound is 40 dB, how many decibels is twice as loud?

3.5

4.5

5.5

6

Position vs. Time

2.5

Time (sec)

1.5

6

5 4

3 2

-3

-4

-5 -6

0.5

And do the TAKS homework.

cstephenmurray.com