2009-10 Harmonic Motion 2

Diagram 1

1. Use diagram 1 at the right answer the following:
A. Starting at A, 1 cycle ends at \qquad -
B. Starting at E, 1 cycle ends at \qquad
C. Starting at B going right, 1 cycle ends at ?
D. Equilibrium position $=$
E. If A to E is 60°, the amplitude $=$
F. In one cycle, the pendulum passes thru the equilibrium position \qquad many times.
G. How many amplitudes does it go thru in one full cycle?
H If it takes 0.3 seconds to go from A to E , how long is one period?
2. Period, Amplitude, or Frequency?
A. $\quad 20^{\circ}$
E.__Maximum displacement from its
H. \qquad Decreases over time.
B. \qquad 1.25 seconds. equilibrium position.
I. \qquad "A"
C.
\qquad 280 Hz
F.
How many cycles per second.
J.
K. \qquad " f "
3. If the period of a pendulum is 0.5 seconds, calculate the frequency of the pendulum.
4. If the frequency of a wave is 1.35 Hz , find its period.
5. Use the pendulums at the right to answer the following. Notice IV. has smaller masses.
A. Which has the most energy?
B. What is the amplitude of I?
C. Which has the smallest period: I or II?
D. From the lab: which pendulum has the longest period: III or IV?
E. Why?
F. Which pendulum has the longest period: I or III?
6. If you double the mass on the end of a pendulum, does T increase or decrease?

Imagine a pendulum moving from the top of the graph to the bottom with a pen touching the graph. The graph moves to the right. The graph shows the position of the pendulum. Also, write these formulas on your table: $f=\#$ cycles/\#seconds; $\quad T=$ \#seconds/\#cycles
7. Use Graph 1 to answer the following:
A. Amplitude =
B. \# of cycle in 1 second?
C. Calculate the frequency shown on Graph 1.
D. Calculate the period shown on Graph 1.
E. Over time, the pendulum will d \qquad \ldots
F. Where will it come to rest?
8. Use Graph 2 to answer the following:
A. Amplitude =
B. $\mathrm{f}=$
C. $\mathrm{T}=$
D. How many cycles are shown?
E. Equilibrium position $=$
9. Graph 1 or Graph 2
A. ___ Has the greatest amplitude.
B. ___Has the longest period (most time).
C. ___Has the greater frequency.
D. \qquad Has the higher equilibrium position.
10. Now compare the shapes of Graph 1 and 2
A. If the amplitude increases, how does the shape change?
B. If the period gets smaller, how does the graph change?

11. If a pendulum is 34 cm long, find its period. (Hint: notice that " g " is in m / s^{2}.)

Example: How long is a pendulum that has a period of 3.2 seconds?

$$
\begin{gathered}
T=2 \pi \sqrt{\frac{\ell}{g}} \\
3.2=6.28 \sqrt{\frac{\ell}{10}} \\
\frac{3.2}{6.28}=\frac{\sigma .28}{6.28} \sqrt{\frac{\ell}{10}} \\
0.5096=\sqrt{\frac{\ell}{10}}
\end{gathered}
$$

From the Lab:
13. Was it better to measure the period of the pendulum with only cycle or 5 cycles?

Why?
Table 1
14. What is the experimental variable in Table 1?
15. What are the control variables in Table 1?
16. What were students trying to understand in Table 1?

Mass	Length	Amplitude	Period
14 g	10 cm	10°	.64 sec
14 g	15 cm	10°	.79 sec
14 g	25 cm	10°	1.1 sec

17. What were students trying to understand in Table 2?

Table 2
18. How do the following affect the period of a pendulum?
A. Amplitude.
B. Mass

C Length.

And do the TAKS Homework.

