B-Day: Due Fri., Mar 12 A-Day: Due Mon., Mar 22

2009-10 Harmonic Motion 2

- Use diagram 1 at the right answer the following: 1.
 - A. Starting at A, 1 cycle ends at _____. B. Starting at E, 1 cycle ends at _____
 - C. Starting at B going right, 1 cycle ends at ?
 - D. Equilibrium position =
 - E. If A to E is 60° , the amplitude = F. In one cycle, the pendulum passes thru the equilibrium position _____ many times.
 - G. How many amplitudes does it go thru in one full cycle?
 - H If it takes 0.3 seconds to go from A to E, how long is one period?
- 2. Period, Amplitude, or Frequency?

A20°	EMaximum displacement from its	H Decreases over time.
B1.25 seconds.	equilibrium position.	I "A"
C14 cm	FHow many cycles per second.	J "T"
D280 Hz	GTime for one cycle.	K "f"

- If the period of a pendulum is 0.5 seconds, 3. calculate the frequency of the pendulum.
- 4. If the frequency of a wave is 1.35 Hz, find its period.
- 5. Use the pendulums at the right to answer the following. Notice IV. has smaller masses.
 - A. Which has the most energy?
 - B. What is the amplitude of I?
 - C. Which has the smallest period: I or II?
 - D. From the lab: which pendulum has the longest period: III or IV?
 - E. Why?
 - F. Which pendulum has the longest period: I or III?
- 6. If you double the mass on the end of a pendulum, does T increase or decrease?

Imagine a pendulum moving from the top of the graph to the bottom with a pen touching the graph. The graph moves to the right. The graph shows the position of the pendulum. Also, write these formulas on your table: f = #cycles/#seconds; T = #seconds/#cycles

- 7. Use Graph 1 to answer the following: B. # of cycle in 1 second? A. Amplitude = C. Calculate the frequency shown on Graph 1.
 - D. Calculate the period shown on Graph 1.
 - E. Over time, the pendulum will d_____
 - F. Where will it come to rest?
- Use Graph 2 to answer the following: 8. A. Amplitude = B. f =
 - C. T =
 - D. How many cycles are shown?
 - E. Equilibrium position =
- Graph 1 or Graph 2
 - A. ____Has the greatest amplitude.
 - B. ____Has the longest period (most time).
 - C. ____Has the greater frequency.
 - D. ____Has the higher equilibrium position.
- 10. Now compare the shapes of Graph 1 and 2 A. If the amplitude increases, how does the shape change?

B. If the period gets smaller, how does the graph change?

cstephenmurray.com

IV l0cm 0cm 15cm 15cm 20°

2009-10 Harmonic Motion 2

11. If a pendulum is 34 cm long, find its period. (*Hint: notice that "g" is in m/s*².)

 A pendulum has a period of 0.85 seconds. How long is the pendulum <u>in centimeters</u>.

From the Lab:

13. Was it better to measure the period of the pendulum with only cycle or 5 cycles?

Why?

- 14. What is the experimental variable in Table 1?
- 15. What are the control variables in Table 1?
- 16. What were students trying to understand in Table 1?
- 17. What were students trying to understand in Table 2?

18.	How do the following affect the period of a pendulum?	
	A. Amplitude.	

B. Mass

C Length.

And do the TAKS Homework.

Table 1						
Mass	Length	Amplitude	Period			
14g	10 cm	10°	.64 sec			
14g	15 cm	10°	.79 sec			
14g	25 cm	10°	1.1 sec			

Table 2

Mass	Length	Amplitude	Period
14g	10 cm	10°	.64 sec
20g	15 cm	15°	.79 sec
5g	25 cm	25°	1.1 sec