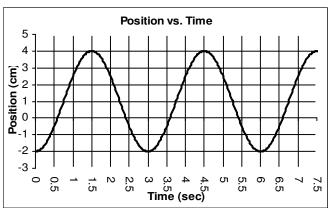

A-Day: Due Wed., 3/10 B-Day: Due Thurs., 3/11


2009-10 Harmonic Motion 1

Harmonic Motion: Yes or No?		1. Period	A. The number of cycles per second.
Pendulum:	A bouncing ball:	2. Equilibrium	B. A unit of one cycle per second.
	A mulan mullad from an acida	position	C. The size or strength of a cycle.
Ocean waves:	A ruler pulled from one side and released:	3. Amplitude	D. Time it takes to complete one cycle.
A child on a swing:	A person jumping up and	4. Damping	E. A part of motion that repeats over and over with a set series of events.
Jumping Jacks:	down:	5. Frequency	
Bouncing spring:	A spinning ball:	6. Cycle	F. Halfway between the two sides and where the motion comes to rest.
Bouncing spring.		7. Hertz	G. The motion dying out over time.
Period, Frequency, or Amplitude? Doesn't change period. More of this means more energy. Increases as a pendulum swings back and forth faster. Measured in cycles per second. Measured in meters or centimeters. This decreases with a smaller swing. If the frequency increases, this decreases. Measured in Hertz. Measured in seconds. If it swings back and forth slower, this decreases. As it dampens, this decreases.		C in 1 cycle?	Where is the equilibrium position for this pendulum? If the pendulum starts at C going to the right, where does 1 cycle end? From letter A to letter would be the amplitude. arts at A, how many times does it pass point iod of 4 seconds. What is its frequency?
A moving spring: at A and C it turns around. A. Where is its equilibrium position? If the spring starts at position A, how much of a cycle does it complete from A to C? If the spring moves 10 cm from C to A (side to side), how big is it's amplitude?		A pendulum has a frequency of 3 Hz. What is its period?	
		A pendulum takes 10 seconds to complete 2 cycles. A) What is its period? B) What is its frequency?	
Position vs. Time 8 6 A E I M		Position vs. Time 5 4	

2 cycles after D is ___ 1 cycle after A is ____; 1/2 cycle after G is ____; 1/4 cycle before M is _____. # of complete cycles shown is _ Period (T) =Frequency (f) =

Equilibrium position = Amplitude (A) =

Mark 1 cycle of the harmonic motion.

Starting at 1.5 secs, when does the 2nd cycle end:

Number of cycles shown is _

Period (T) =Frequency (f) =Equilibrium position = Amplitude (A) = Use the "Harmonic Motion Basics" table to answer the following:

1. Give the variables and units for the following quantities:

A. Period: _____; B. Amplitude: _____; C. Frequency: _____; D. Wavelength: _____

- 2. If the period of a pendulum is 4 seconds, find the frequency of the pendulum.
- 3. If the frequency of a wave is 1.35 Hz, find its period.
- 4. If the frequency of a wave is 0.02 Hz, find its period.
- 5. If the frequency gets bigger, the period gets _____.

Example 1: Find the period of a pendulum that is 45 cm long.

$$T = 2\pi \sqrt{\frac{\ell}{g}}$$
 The square root sign is the opposite of a square. $4^2 = 16$ and $\sqrt{16} = 4$ On your calculator push "2nd" then " x^2 " or "INV" " x^2 ".

$$T = 2\pi \sqrt{\frac{1}{g}}$$
 On your calculator push "2nd" then "x²" or "INV"
$$T = 2\pi \sqrt{\frac{0.45}{10}}$$
 must be in meters. And 100 cm = 1 m

$$T = 2\pi\sqrt{0.045}$$

$$T = 2\pi(.212)$$

$$T = 1.33 \,\mathrm{sec}$$

- 6. Find the period of a pendulum that is 80 cm long.
- 7. What is the period of a spring-mass system if the spring has a spring constant of 25 N/m with a 1.5 kg object on it. (*Make sure to use the spring-mass system equation—not the one for a pendulum.*)

Check on the website for the TAKS HW.