Harmonic Motion: Yes or N	1. Period \quad A. The number of cycles per second.
Pendulum: \qquad Ocean waves: \qquad A child on a swing: \qquad Jumping Jacks: \qquad Bouncing spring: \qquad A bouncing ball: \qquad A ruler pulled from one side and released: \qquad A person jumping up and down: \qquad A spinning ball: \qquad	2. Equilibrium position B. A unit of one cycle per second. 3. Amplitude C. The size or strength of a cycle. D. Damping E. A part of motion that repeats over and over with a set series of events. 6. Frequency F. Halfway between the two sides and where the motion comes to rest. 7. Hertz G. The motion dying out over time.
Period, Frequency, or Amplitude?\qquad Doesn't change period.\qquad More of this means more energy.\qquad Increases as a pendulum swings back and forth faster.\qquad Measured in cycles per second.\qquad Measured in meters or centimeters.\qquad This decreases with a smaller swing.\qquad If the frequency increases, this decreases.\qquad Measured in Hertz.\qquad Measured in seconds.\qquad If it swings back and forth slower, this decreases.\qquad As it dampens, this decreases.	Where is the equilibrium position for this pendulum? If the pendulum starts at C going to the right, where does 1 cycle end? From letter A to letter \qquad would be the amplitude. If the pendulum starts at A , how many times does it pass point C in 1 cycle?
	An spring has a period of 4 seconds. What is its frequency?
A moving spring: at A and C it turns around. A. B. C. Where is its equilibrium position? If the spring starts at position A , how much of a cycle does it complete from A to C ? If the spring moves 10 cm from C to A (side to side), how big is it's amplitude?	A pendulum has a frequency of 3 Hz . What is its pe A pendulum takes 10 seconds to complete 2 cycles. A) What is its period? B) What is its frequency?
	Position vs. Time
$\begin{array}{ll} 1 \text { cycle after } \mathrm{A} \text { is ___ } ; & \begin{array}{l} 2 \text { cycles after } \mathrm{D} \text { is } \\ 1 / 2 \text { cycle after } \mathrm{G} \text { is ___ } \\ \# \text { of complete cycles shown is } \\ \text { Period }(\mathrm{T})= \end{array} \\ \text { Equilibrium position }= & \text { Frequency }(\mathrm{f})= \\ \text { Equitude }(\mathrm{A})= \end{array}$	Mark 1 cycle of the harmonic motion. Starting at 1.5 secs, when does the 2 nd cycle end: Number of cycles shown is \qquad Period $(\mathrm{T})=$ Frequency (f) = Equilibrium position $=\quad$ Amplitude $(\mathrm{A})=$

Use the "Harmonic Motion Basics" table to answer the following:

1. Give the variables and units for the following quantities:
A. Period: \qquad ; B. Amplitude: \qquad ; C. Frequency: \qquad ; D. Wavelength: \qquad
2. If the period of a pendulum is 4 seconds, find the frequency of the pendulum.
3. If the frequency of a wave is 1.35 Hz , find its period.
4. If the frequency of a wave is 0.02 Hz , find its period.
5. If the frequency gets bigger, the period gets \qquad .

Example 1: Find the period of a pendulum that is 45 cm long.

$$
\begin{aligned}
& T=2 \pi \sqrt{\frac{\ell}{g}} \quad \begin{array}{l}
\text { The square root sign is the opposite of a square. } 4^{2}=16 \text { and } \sqrt{16}=4 \\
\text { On your calculator push " } 2 n d \text { " then " } x^{2} " \text { " or "INV" " } x^{2} \text { ". }
\end{array} \\
& T=2 \pi \sqrt{\frac{0.45}{10}} \ell \text { must be in meters. And } 100 \mathrm{~cm}=1 \mathrm{~m} \\
& T=2 \pi \sqrt{0.045} \\
& T=2 \pi(.212) \\
& T=1.33 \mathrm{sec}
\end{aligned}
$$

6. Find the period of a pendulum that is 80 cm long.
7. What is the period of a spring-mass system if the spring has a spring constant of $25 \mathrm{~N} / \mathrm{m}$ with a 1.5 kg object on it. (Make sure to use the spring-mass system equation-not the one for a pendulum.)

Check on the website for the TAKS HW.

