Period:

Momentum In Class Review

- A. $p_{1+2B} = p_{1A} + p_{2A}$
- $B. \quad p_B I = 0$
- C. $0 = p_{1A} + p_{2A}$
- D. $p_B + I = p_A$
- E. $p_{1B} + p_{2B} = p_{1A} + p_{2A}$
- F. $p_{1B} + p_{2B} = p_{1+2A}$

- 1. A car speeds up.
- 2. A person running catches a football.
- 3. Two moving cars hit and bounce off.
- 4. A moving airplane drops a bomb.
- 5. A rocket at rest turns on its engine: hot gases go back; the rocket goes forward.
- 6. A moving car uses its brakes to stop.

- 7. Which has more momentum?
 - A. A fast baseball or a slow baseball?
 - B. A bowling ball or a baseball with the same speed?
 - C. A slow ping pong ball or a house?
- 8. What does an impulse equal?

- 9. Does a large force always cause a large impulse? Explain.
- 10. 15 N acts for 8 seconds. How much momentum was gained?

- 11. A. How much momentum was gained by the 4 kg object?
 - B. How big was the impulse acting on the object?
 - C. Calculate the time the force acted.
 - D. Calculate the acceleration of the object.
 - E. What is the final velocity of the object?

- 12. Elastic, Inelastic, or Perfectly Inelastic (could be more than one)?
 - A. $\sum p_{before} = \sum p_{after}$, $\sum E_{kbefore} \neq \sum E_{kafter}$
 - B. $\sum p_{before} = \sum p_{after}$, $\sum E_{kbefore} = \sum E_{kafter}$
 - C. $\sum p_{before} = \sum p_{after}$, and $m_{after} = m_{1+2}$
 - D. ____There is little or no sound.
 - E. ____There is a lot of noise.
 - F. ____The objects are mangled, or crushed.

- 13. Two objects collide. They don't stick together.
 - A. What happens to the momentum of the 4 kg object?
 - B. What happens to the momentum of the 6 kg object?
 - C. What happens to the total momentum of the system?

Cart 2

- 14. Two identical carts moving 6 m/s stop. The Cart 1 hits a spring. The Cart 2 just hits a wall.
 - A. Calculate the initial momentum of the carts.
 - B. Calculate the change of momentum of the carts.
 - C. Which cart experienced the bigger change of momentum?
 - D. Which cart felt the bigger impulse?
 - F. Calculate the force on each cart.

- E. Which cart felt the bigger force?
- G. So, to give the same Δp you have two choices:

Name: _ Period:

- 15. Slim Jim is also an astronaut. His space ship "Galactic Cruiser" is at rest when he shoots his space cannon.
- A. What is the mass of the ship?
- B. What is the weight of the ship?
- C. Calculate the final velocity of the ship.
- D. Which has more momentum afterwards: the ship or the projectile?
- 16. A 20 g bullet is shot 800 m/s into a 50 kg object that is at rest.
 - A. If 1000 g = 1 kg, change the mass of the bullet to kilograms.
 - B. What is the mass of the *combined object*?
 - C. What is the initial momentum of the bullet?

- D. How much momentum does the combined object have afterwards?
- E. Under the diagram, calculate the final speed of the combined object.
- F. What kind of collision is this?
- G. The numbers given are realistic for a bullet and a person. In movies, a bullet causes a person to be thrown backwards violently. How likely is the movie scenario? Explain.

Use the graphs above to answer the following questions.

- A. ____ Shows an object with a positive acceleration
- B. ____ Could be an object moving to the right and slowing down.
- C. ____ Shows a negative change of speed.
- D. ____ Shows a force pushing to the left.
- 19. Find the impulse of Graph 1.

- 18. Force A, B, C, D, or E (could be more than one)?
 - A. _____ Is the strongest positive force.
 - B. _____ Is the greatest negative force.
 - C. _____ Is the weakest positive force.
 - D. ____ Will cause the fastest negative acceleration.
 - E. ____ Is the strongest force pulling left.
 - F. ____ Shows negative acceleration.
- 20. A 2 kg object is moving 6 m/s. What would be its final velocity after the impulse of Graph 1?

Period:

Momentum In Class Review

A. $p_{1+2B} = p_{1A} + p_{2A} \vee$

$$\mathbf{B}. \quad \mathbf{p}_{\mathrm{B}} - \mathbf{I} = \mathbf{0} \quad \mathbf{G}$$

C.
$$0 = p_{1A} + p_{2A} \le$$

D.
$$p_B + I = p_A$$

E.
$$p_{1B} + p_{2B} = p_{1A} + p_{2A} = 7$$

F.
$$p_{1B} + p_{2B} = p_{1+2A}$$
 7

- 1. ▷A car speeds up.
- 2. F A person running catches a football.
- 3. ETwo moving cars hit and bounce off.
- 4. A moving airplane drops a bomb.
- 5. A rocket at rest turns on its engine: hot gases go back; the rocket goes forward.
- 6. A moving car uses its brakes to stop.

- Which has more momentum?
 - A. A(fast baseball or a slow baseball?
 - B. A bowling ball or a baseball going 2 m/s?
 - C. A slow ping pong ball or a house?
- 8. What does an impulse equal?

$$=$$
 Ft or $=$ ΔP

Does a large force always cause a large impulse? Explain.

gained?

$$\Delta p = T = Ft = 15(8) = 30(4) = 120 + 9m/s$$

- 11. A. How much momentum was gained by the 4 kg object? 36-12 = 24 kgm/s
 - B. How big was the impulse acting on the object? I=OP=ZYKAMS
 - C. Calculate the time the force acted.

D. Calculate the acceleration of the object.

E. What is the final velocity of the object?

$$P_{f} = mV_{f}$$
 $V_{f} = 9 m/s$
36 = 4 V f

ty of the object?
$$ert_{\mathcal{C}}=-9~$$
 m/S

$$\Delta \rho = I = Ft = 15(8) = 30(4) = 120 + 9m/s$$

12. Elastic, Inelastic, or Perfectly Inelastic (could be more than one)?

A.
$$\Sigma_{pbefore} = \Sigma_{pafter}$$
, $\Sigma_{kbefore} \neq \Sigma_{kafter}$

$$B. \quad \underline{\hspace{0.5cm}} \Sigma p_{before} = \Sigma p_{after}, \\ \Sigma E_{kbefore} = \Sigma E_{kafter}, \\ \text{combined}$$

C.
$$PI_{\Sigma p_{before}} = \Sigma p_{after}$$
, and $m_{after} = m_{1+2}$

- E There is little or no sound.
- E. I PI There is a lot of noise.
- F. <u>I</u> The objects are mangled, or crushed.

- 13. Two objects collide. They don't stick together.
 - A. What happens to the momentum of the 4 kg object? increases
 - B. What happens to the momentum of the 6 kg object? decreases
 - C. What happens to the total momentum of the system? constant (stays same)

- 14. Two identical carts moving 6 m/s stop. The Cart 1 hits a spring. The Cart 2 just hits a wall.
 - A. Calculate the initial momentum of the carts. 9 19 m/s
 - B. Calculate the change of momentum of the carts. $-9 \times 9 \times 5$
 - C. Which cart experienced the bigger change of momentum? 52mc
 - D. Which cart felt the bigger impulse? Same $\mathcal{I} = \Delta \rho$ E. Which cart felt the bigger force? Cart 2

F. Calculate the force on each cart.

$$I = P = Ft$$
 $F = -9/.5$
 $-9 = F(.5) = -18N$

G. So, to give the same Δp you have two choices: Big $F_1 \leq m = 11 + OR \leq m = 11 + F_2$, big t

- 15. Slim Jim is also an astronaut. His space ship "Galactic Cruiser" is at rest when he shoots his space cannon.
- A. What is the mass of the ship? Z500 Fg

 B. What is the weight of the ship? ON (in space)
- C. Calculate the final velocity of the ship. 0 = 2500V + 1,5 (800) -1200 = 2,500 V = 12 = 748 m/s
- D. Which has more momentum afterwards: the ship or the projectile? 52 meg, but 1 is neg.
- 16. A 20 g bullet is shot 800 m/s into a 50 kg object that is at rest.
 - A. If 1000 g = 1 kg, change the mass of the bullet to kilograms.
 - B. What is the mass of the combined object? 50.0 Z *9
 - C. What is the initial momentum of the bullet? ,02(800) = 16 Fgm/s
 - D. How much momentum does the combined object have 16 kg m/s afterwards?
 - Under the diagram, calculate the final speed of the combined object.
 - F. What kind of collision is this? Perfectly inelastic
 - G. The numbers given are realistic for a bullet and a person. In movies, a bullet causes a person to be thrown backwards violently. How likely is the movie scenario? Explain. Not possible. The bullet doesn't have enough momentum.

Use the graphs above to answer the following questions.

- 17. Graph 1 or Graph 2?
 - A. Shows an object with a positive acceleration
 - B. Z Could be an object moving to the right and slowing down. Fishef.
 - C. Z Shows a negative change of speed.
 - D. _Z_ Shows a force pushing to the left.
- 19. Find the impulse of Graph 1.

$$= \frac{1}{2}(1)(5) + 3(5) + \frac{1}{2}(5)(.5)$$

$$= 2.5 + 15 + 1.25$$

$$= 18.75 \text{ kgm/s}$$

- 18. Force A, B, C, D, or E (could be more than one)?
 - A. B Is the strongest positive force.
 - B. E Is the greatest negative force.

 - D. E Will cause the fastest negative acceleration.
 - E Is the strongest force pulling left.
 - F. D. E Shows negative acceleration.
- 20. A 2 kg object is moving 6 m/s. What would be its final velocity after the impulse of Graph 1?

$$\rho_{B} + I = \rho_{A}$$
 $z(6) + 18.75 = z(v)$
 $30.75 = 2v$
 $v = 15.375 = v$