A-Day Due Thur., Dec 3 B-Day: Due Fri., Dec 4

	Force vs. Distance									
	12 -									
	10 ·									
	•									
Force (N)	0 '									
	6 -									
	4 -									
	-									
	2 -									
	0 -									
0 4 8 12 16 Distance (m)										

2009 Energy 6

- 1. The black line on the graph shows the force acting on an object. A. How big is the force?
 - B. For how much distance does the force act (the whole graph)?
 - C. Calculate the work done by the force.
 - D. If the force lifts a 5 kg object, how high is the object lifted?
 - E. If the object is lifted in 1.5 seconds, how much power was used to lift the object?

k = 120 N/m

2 kg

v = 0 m/s

2 kg

v = 3.5 m/s

- 2. A spring is compressed 0.6 m and has a spring constant of 120 N/m. When released, a 2 kg object slides over a surface that has friction.
 - A. Calculate W_{in} ?
 - B. Calculate W_{out} ?

.60 cm

60 N

12 cm

C. Calculate the efficiency.

20 kg

- D. How much energy was lost (amount, not %)?
 - A pulley system lifts a 20 kg object 12 cm off the ground.
 A. What is the weight of the object?
 - B. Remembering to use meters, calculate W_{in} =
 - C. Calculate $W_{out} =$
 - D. Calculate efficiency.
- 4. What is the biggest efficiency that can exist in an energy transfer?

- 5. An 8 kg object is pushed by a 12 N force to accelerate it from 2 m/s to 3 m/s.
 - A. BELOW THE DIAGRAM calculate the kinetic energies before and after and the work done.
 - B. How much energy was gained by the object (using the two kinetic energies)?
 - C. How much energy was given to the object (work)?
 - D. Calculate efficiency.

NOTE: W_{out} is NOT the final energy (though sometimes it is). W_{out} is the energy gained by the object. W_{in} is the energy given to the object. If these are the same, then the energy transfer is 100% efficient.

2009 Energy 6—p2

6. A rock is dropped from 25 m. Using Conservation of Energy, how fast is it going just before it hits the ground?

- 7. A ball is released from position A. It rolls down the hill and up the other side to position G. Give the letters from greatest to least kinetic energy.
- A 3 kg object is moving 2 m/s.
 A. Calculate its kinetic energy.
 - B. The same 3 kg object is accelerated so that its speed is doubled, how fast is it moving?
 - C. Calculate its new kinetic energy.
 - D. So, if the speed doubles (increases by a factor of 2) the kinetic energy _____ (increases by a factor of ____.)
- 9. Fill in the following table.

	Symbol	Atomic Number	Valence Electrons	# of protons	Oxidation #	Metal/ Nonmetal	# electrons gained or lost
Magnesium							
Oxygen							
Helium							
Potassium							

- 10. A. Using electron arrows, combine Potassium and Oxygen. 11. Using electron arrows, combine Calcium and Nitrogen. (Example below)
 - B. Give the formula for Potassium Oxide:

B. Give the formula for Calcium Nitride:

Electron Arrows — An easy visual aid.

