A-Day Due Fri., Nov 20 B-Day: Due Mon., Nov 30

2009 Energy 4

Before After $v = 0 \, m/s$ v = 3 m/s

1. A moving mass is sliding across a frictionless surface. It stops after compressing a spring.

- A. $E_{before} =$
- B. $E_{after} =$

C. Was the spring compressed by a force doing work or by the energy of the moving object?

D. If k = 50 N/m, find how far the spring was compressed.

2. For the following Conservation of Energy equations, give the situation.

A. PEel - W = 0

Situation:

- B. Ep + W = Ep
- Situation:
- C. Ep = Ek
- Situation:
- D. Ek W = Ek
- Situation:

3. A ball is going 12 m/s. How far into the air will it go?

- A. $E_{before} = ____ B. Work? = ____$
- C. $E_{after} = \underline{}$

- D. Conservation of Energy Equation:
- E. Solve for how high it goes.

- Slim Jim pushes on a box with 6.2N of force for 9.5m.
 - A. How much work did Jim do on the box?
 - B. What kind of energy did the box gain?
 - C. How fast is the box going afterwards?

D. If he pushed for 1.5 seconds, how much power did he expend?

Understanding efficiency:

- 5. A 10 N force pulls a 2 kg object up a 9 m long ramp to get the object to the top of a 3 m tall platform.
 - A. Calculate the work done to pull the object up the ramp.

B. Calculate the potential energy of the object when it is on the table.

- C. Was all of the work transferred to the object?
- D. If energy cannot be created nor destroyed, where did the energy go?
- E. Find the efficiency of the object (See "Energy Transfer" notes).

2008 Energy 4—p2

	If you don't remember the following song, go to the Study Helps and then Songs and relisten.						
6.	From the song: "A	Metals are on the	side; n	onmetals on the	Metals tend to	electrons;	
	nonmetals them tight. Losers of elec		osers of electrons	s become	; gainers of electro	_; gainers of electrons become	
	Losers and gainers find themselves electrically attracted and they form					bonds of love."	
7.	Metal or nonmeta	1?					
	A Lithium B Helium						
8.	Give the oxidation numbers for the following:						
	A Calcium B Fluorine	CO DM	xygen E. Iagnesium F.	Nitrogen Sodium			
9.	Give the number of valence electrons for the following:						
	AHelium BOxygen	CBe DAr	eryllium E. egon F.	Nitrogen Potassium			
10.	A spring with a spring constant of 25 N/m is stretched 0.4 m in 2 seconds. A. Calculate the energy the spring has after it is compressed.						
	B. What was done to compress the spring?						
	C. Calculate the power used to compress the spring.						