2009 Energy 1

VERY Useful Study Helps are available.

1. A person holds onto an object for 2 minutes, but doesn't move the object. Is work done on the object?
2. What kind of energy is being described: Ek, Ep, W, or PEel?
A. \qquad Friction stopping an object from moving.
B. \qquad An object is going $6 \mathrm{~m} / \mathrm{s}$.
C. \qquad A spring is compressed.
D. \qquad A moving car.
E. \qquad An object is pushed for 3 m .
F. \qquad An object on top of a 3 meter table.
3. In the following situations is energy added (gained) or subtracted (lost)?
A. \qquad An object is lifted up from the ground.
B. ___ An object is lowered back to the ground.
C. ___ Friction slows an object down.
D. \qquad A spring is compressed.
E. \qquad An object speeds up.
4. A 200 kg object is going $4 \mathrm{~m} / \mathrm{s}$. Find its kinetic energy.
5. A 3 N force pushes on a object for 20 meters. Find the work done.
6. A 4 kg object compresses a spring 0.12 meters. The spring constant for this spring is $2.3 \mathrm{~N} / \mathrm{m}$. Find the elastic potential energy stored in the spring.
7. A 10 kg object is 15 meters up a hill. Find its potential energy.
8. A 4 kg object has 400 J of potential energy. Find how high off the ground the object is.
9. A 6 kg object has 350 J of kinetic energy. Find the velocity of the object.
10. A 2 kg object is on spring that is compressed 1.5 meters. If the spring has 2 Joules of Elastic Potential energy, find the spring constant of the spring.
11. A force did 80 Joules of work on an object in 4 m .

How big was the force?

In the equation for potential energy h is VERTICAL HEIGHT, not distance.
12. Find the potential energy for a 5 kg ball that is 8 m up a $30^{\circ} \mathrm{ramp}$. (Use the hint above.)

13. The graphic below shows a ball being released at position A.
A. At which position does the ball have the most kinetic energy?
B. At which position does the ball have the most potential energy?

