2009 Forces 2

1. A. How many normal forces are acting on the cart?
B. Draw the normal forces on the cart.
C. How many normal forces are acting on the hanging masses?
D. What force is acting on all the cart and on the masses?
E. Calculate the force of weight of the cart.
F. If the cart is moving, is it accelerating or at constant speed?
G. Why?
2. Calculate the normal forces acting on the objects below.

3. If $\mathrm{F}_{\mathrm{N}}=25 \mathrm{~N}$ and $\mu_{\mathrm{s}}=0.24$ and $\mu_{\mathrm{k}}=0.10$, calculate static and kinetic friction.
4. Static or Kinetic Friction?
A. Usually the smaller one.
B. If this is greater than the applied force, the object will slow down and eventually stop.
C. Between your shoes and the ground when you are walking normally.
D. Use to calculate acceleration.
E. When you are going down a slide.
F. How much force is needed to keep an object sliding.
G. When a car "loses traction".
H. Only exists when the object is not moving.
I. Maximum friction before an object slides.
J. Exists only when the object is moving.
5. For the mass at the left:
A. How much force is necessary to keep this object moving?
B. How much force is necessary to start this object sliding?
C. If this object starts at rest, will this object slide?
D. If an object is accelerating, is it at rest or moving?
E. Find the acceleration of the object.
F. What is the weight of the object?
G. Find the normal force on the object.

Forces 2-p2
6. What are the units for force?
7. What are the units for mass?
8. A 20 kg object is floating in space.
A. What is its mass?
B. What is its weight?
9. A 15 kg object is floating in space. What is it mass?
10. A 28 N object is sitting on a desk. What is its weight?

11. Slim Jim is trying to move a 10 kg object. His dog "Bim" is trying to be helpful, but not always succeeding.
A. What is the weight of the object?
B. What is the normal force on the object?
C. What is the net force in the x-direction?
D. Calculate the acceleration of the object.
12. A car is moving and there is wind resistance.
A. What kind of force is wind pushing against the car?
B. Draw and label any other forces acting on the car.
C. If $\mathrm{F}_{\text {wind }}>\mathrm{F}_{\text {engine, }}$, is acceleration + or - ?
D. If $\mathrm{F}_{\text {wind }}=\mathrm{F}_{\text {engine }}$ the car could have its c \qquad c \qquad on.
E. What is the speed of the object if $\mathrm{F}_{\text {wind }}=\mathrm{F}_{\text {engine }}$?
F. If $\mathrm{F}_{\text {wind }}=\mathrm{F}_{\text {engine }}$, then the object is at e (Look on the "Forces and Newton's First Law of Motion" notes.)

13. A 2 kg object is thrown into the air going $5 \mathrm{~m} / \mathrm{s}$.
A. Is the object's initial velocity + or - ?
B. Is the object's acceleration + or - ?
C. What is the force pulling down on the object (give a number).

Notice that an object can be moving the opposite way of the acceleration.
14. A 25 kg object is moving $12 \mathrm{~m} / \mathrm{s}$ to the left. It has an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$ to the right.
A. Is the object speeding up or slowing down?
B. Is the acceleration positive or negative?
C. Which force must be bigger?
D. Use $F_{\text {net }}=$ ma to calculate the net force on the object.
E. Since the two force must equal $\mathrm{F}_{\text {net }}$, calculate F_{2}.

