A-Day: Due Thurs., Oct 15
B-Day: Due Fri., Oct 16

1. Projectile Motion?
A. \qquad Dropping a helium balloon
B. \qquad Throwing a ball horizontally.
C. Jumping off of a diving board.
C. \qquad Running on the ground.
2. A person walks 65 meters at an angle of 22°. How far east did they walk?
3. Notice the two vectors at the right. Keep the 15 m long vector alone at 0° (pointing to the right). Think about all of the ways you could turn the 5 m long vector when you add them together.
A. What is the largest the resultant could possibly be?
(What is the greatest displacement from your starting position?)
B. What is the shortest the resultant could possibly be?
(What is the shortest displacement from your starting position?)
4. Use the notes "Vector Basics" and "Adding Vectors.
A. What do we mean by the magnitude of a vector?

B. What is resolving a vector?
5. Graphically add these vectors: $\mathrm{E}+\mathrm{B}-2 \mathrm{D}+\mathrm{G}$.

6. Mathematically, what does $\mathrm{B}+\mathrm{H}+\mathrm{G}=$?
7. A plane is flying $75 \mathrm{~m} / \mathrm{s}$ at a direction of 60°. It is pushed by a $25 \mathrm{~m} / \mathrm{s}$ wind that is blowing directly east.
A. Does the wind increase or decrease the speed of the plane?
B. Does the wind have any vertical component?
C. Add the two vectors together to find the plane's total speed and direction in the wind.
8. The arrows show the magnitude (amount) of $V x$ and Vy at point A on the projectile's parabola.
A. As the projectile goes from A to C , does Vy increase or decrease?
B. Use arrows to show Vx and Vy at each letter. Arrows don't have to be the exact right size, just bigger or smaller.
(E)
x-dir.
$\mathrm{V}_{\mathrm{i}}=$
$V_{f}=$
$\mathrm{a}_{\mathrm{x}}=$ $\Delta x=$ $\mathrm{t}=$

Equation:
9. A ball is shot from the ground going $15 \mathrm{~m} / \mathrm{s}$ at an angle of 65°. How high did it go?
A. Find the x and y components of the initial velocity.
B. Calculate how high it goes.
\square

