1. Convert $1500 \mathrm{~m} / \mathrm{sec}$ to $\mathrm{m} / \mathrm{min}$.
$3.3 \mathrm{ft}=1 \mathrm{~m} \quad 5280 \mathrm{ft}=1 \mathrm{mi}$
$12 \mathrm{in}=1 \mathrm{ft} \quad 2.54 \mathrm{~cm}=1 \mathrm{in}$.

Using the "Metric" Notes:
2. A. $12,000 \mathrm{~m}=$ \qquad km.
B. $450 \mathrm{~cm}=$ \qquad m
C. So, $560 \mathrm{cg}=$ \qquad g
D. $32,000 \mathrm{~L}=$ \qquad ML (mega)
E. $980 \mathrm{~mL}=$ \qquad L

From your "Graphing Linear Motion Notes".
3. X or Y axis?
A. \qquad Vertical axis
D. \qquad Dependent variable
B. \qquad Independent variable
E. \qquad Acceleration
C. \qquad Manipulated variable
F. \qquad Time
4. Use the graph at the right to answer the following.
A. Calculate the slope for object A (line A).
B. Calculate the slope for object B.
C. Calculate the slope for object C (the flat line).
D. Calculate the slope for object D.
E. Which object has the fastest positive speed?
F. Which object is moving in the negative direction?

G. What is the y-intercept for Line D
H. Give the linear equation for Line D:
5. Put these into scientific notation: $2,450,000=$
6. Put these into normal notation: $5.92 \times 10^{-4}=$ $0.0056=$
7. $\left(6.2 \times 10^{-4}\right)\left(3.06 \times 10^{8}\right)=$
8. Put these into smallest to biggest: centi-, kilo-, micro-, mega-.
9. A. If $\mathrm{S}=\mathrm{D} / \mathrm{T}$, then $\mathrm{T}=$
B. If $p=m v$, then $v=$
B. From D to F below: $\Delta \mathrm{x}=$ \qquad and $\Delta \mathrm{y}=$ \qquad .
10. A. Below $\Delta x=$ \qquad and $\Delta y=$ \qquad .

11.,+- , or 0 ?
A. X position if the object is to the right of the origin.
B. \qquad Displacement if you end up where you started.
C. \qquad Velocity if moving to the left.
D. Acceleration if speeding up to the right.
E. Velocity if an object doesn't change position.
F. Displacement if moving to the right.
G. \qquad Acceleration if your initial speed
H. Velocity if moving down.
I. Acceleration if slowing down while moving up (like a ball thrown into the air).
J. __ Velocity of an object thrown into the air at the very top (just before it comes back down).
K. Vertical displacement if it ends up below where it started.
L. ___ Acceleration for an object that is speeding up while moving to the left.

From the "Acceleration" Notes:
12. What are the two ways you know an object is accelerating?
13. How can an object not change speed, but be accelerating?

Looking on the equation sheet below: remember that " Δ (delta)" ALWAYS means "final - initial", so $\Delta v=v_{f}-v_{i}$.
For these problems you MUST show ALL of the steps.
14. An object is moving $30 \mathrm{~m} / \mathrm{s}$ to the right. After 5 seconds it is moving $10 \mathrm{~m} / \mathrm{s}$ to the left. Find the acceleration of the object. Variables: Equation: Solve:
15. An object is moving $45 \mathrm{~m} / \mathrm{s}$ to the right. After 7 seconds it is moving right at $10 \mathrm{~m} / \mathrm{s}$. Find acceleration. Variables:

Equation:
Solve:
16. Look over your TAKS information: Symbiosis (Mutualism, Commensalism, Predation, Parasitism); Carnivore, omnivore, herbivore; Food webs.
17. Write the information below on your variable and equations sheets.

Variable Sheet

	Δ	(no units)	Delta	Change of (always final - initial)
	x	m	position	Where you are from a certain place
	$\Delta \mathrm{x}$	m	Displacement	Dist. from original position (can be 0)
	$\mathrm{D}($ or d)	m	Distance	How far you travel (total)
	t	Sec	Time	Elapsed time
	v	m / s	velocity	How fast you are moving with dir.
	a	$\mathrm{m} / \mathrm{s}^{2}$	acceleration	How fast you change velocity
	$\Delta \mathrm{y}$	m	Vertical Displ.	Change of verti. distance

Equation Sheet

$\Delta=$ final-initial
$\Delta x=x_{f}-x_{i}$
$v=\frac{\Delta x}{t} \quad S=\frac{D}{T}$
$a=\frac{\Delta v}{t}=\frac{v_{f}-v_{i}}{t}$
$y=m x+b \quad m=\frac{\Delta y}{\Delta x}$

