A-day: Due Tues., Sept 8 B-day: Due Wed., Sept 9

1. Convert 1500 m/sec to m/min.

2009 Physics Basics 5

3.3 ft = 1 m 5280 ft = 1 mi12 in = 1 ft 2.54 cm = 1 in.

2.	<i>Using the "Metric" Notes:</i> A. 12,000 m = km.	B. $450 \text{ cm} =$	m		C. So, 560 cg =	g
	D. 32,000 L =ML (mega)	E. 980 mL =	L			
3.	From your "Graphing Linear Motion Notes". X or Y axis?	D 1				
	A.	Acceleration Time	le			
4.	<i>Use the graph at the right to answer the followin</i> A. Calculate the slope for object A (line A).	lg.			Position vs. Time)
	B. Calculate the slope for object B.		1	120 100 80		B
	C. Calculate the slope for object C (the flat line).				
	D. Calculate the slope for object D.		Ċ	²⁰		D
	E. Which object has the fastest positive speed?			0	2 4 6 Time (sec	8 10 12
	F. Which object is moving in the negative direct	ction?	L		· · · · · · · · · · · · · · · · · · ·	,
	G. What is the y-intercept for Line DH. Give the linear equation for Line D:					
	1					
5	Dut these into acientific notation: 2,450,000 -		0.0054	: _		
5.	Put these into scientific notation. $2,430,000 -$		0.0030) —		
6.	Put these into normal notation: $5.92 \times 10^{-4} =$		7.07×]	$10^{\circ} =$		
7.	$(6.2 \times 10^{-4})(3.06 \times 10^{8}) =$					
8.	Put these into smallest to biggest: centi-, kilo-,	micro-, mega				
9.	A. If $S = D/T$, then $T = B$. If p	= mv, then v $=$				
10	A. Below $\Delta x = _$ and $\Delta y = _$.	B. From	n D to F	F below: $\Delta x =$	= and Δy =	
	$\xrightarrow{12 \text{ m/s}}$		1ı A	m 1m B (L 1m Start	
		1m 1m	E	F	G H	
	0		I	JI	K L	
	V < 21 m →O	1m	М	N (О Р	

cstephenmurray.com

P Copyright © 2009, C. Stephen Murray

2009 Physics Basics 5 – p 2

- 11. +, -, or 0?
 - A. _____ X position if the object is to the right of the origin.
 - B. ____ Displacement if you end up where you started.
 - C. _____ Velocity if moving to the left.
 - D. ____ Acceleration if speeding up to the right.
 - E. _____ Velocity if an object doesn't change position.
 - F. ____ Displacement if moving to the right.
 - G. _____ Acceleration if your initial speed
 - H. _____ Velocity if moving down.
 - I. _____ Acceleration if slowing down while moving up (like a ball thrown into the air).
 - J. _____ Velocity of an object thrown into the air at the very top (just before it comes back down).
 - K. _____ Vertical displacement if it ends up below where it started.
 - L. _____ Acceleration for an object that is speeding up while moving to the left.

From the "Acceleration" Notes:

- 12. What are the two ways you know an object is accelerating?
- 13. How can an object not change speed, but be accelerating?

Looking on the equation sheet below: remember that " Δ (delta)" ALWAYS means "final – initial", so $\Delta v = v_f - v_i$. For these problems you MUST show ALL of the steps.

- 14. An object is moving 30 m/s to the right. After 5 seconds it is moving 10 m/s to the left. Find the acceleration of the object. <u>Variables</u>: <u>Equation</u>: <u>Solve</u>:
- 15. An object is moving 45 m/s to the right. After 7 seconds it is moving right at 10 m/s. Find acceleration. <u>Variables</u>: <u>Equation</u>: <u>Solve</u>:
- 16. Look over your TAKS information: Symbiosis (Mutualism, Commensalism, Predation, Parasitism); Carnivore, omnivore, herbivore; Food webs.

Change of (always final – initial)

Where you are from a certain place

How fast you are moving with dir.

How fast you change velocity

Change of verti. distance

How far you travel (total)

Elapsed time

Dist. from original position (can be 0)

17. Write the information below on your variable and equations sheets.

(no units)

m

m

m

Sec

m/s

 m/s^2

m

Variable Sheet

Delta

position

Displacement

Distance

Time

velocity

acceleration

Vertical Displ.

Equation Sheet

$\Delta = final - initial$				
$\Delta x = x_f - x_i$				
$v = \frac{\Delta x}{t}$ $S = \frac{D}{T}$				
$a = \frac{\Delta v}{t} = \frac{v_f - v_i}{t}$				
$y = mx + b$ $m = \frac{\Delta y}{\Delta x}$				

Δ

х

Δx

D (or d)

t

v

а

Δv