2009 Linear Motion 3

1. An object is dropped from $12 \mathrm{~m}: \mathrm{a}=$ \qquad ; $\Delta y=$ \qquad ; $\mathrm{v}_{\mathrm{i}}=$ \qquad .
2. An object is thrown $5 \mathrm{~m} / \mathrm{s}$ from the ground and lands back on the ground: $\mathrm{a}=$ \qquad ; $\Delta y=$ \qquad ; $\mathrm{v}_{\mathrm{i}}=$ \qquad ; $\mathrm{v}_{\mathrm{f}}=$ \qquad ;
3. An object is thrown $8 \mathrm{~m} / \mathrm{s}$ into the air, how high does it go?: $\mathrm{a}=$ \qquad ; $\mathrm{v}_{\mathrm{i}}=$ \qquad ; $\mathrm{v}_{\mathrm{f}}=$ \qquad ;
4. Freefall: yes or no?
A. A balloon is dropped.
B. \qquad A bowling ball rolls off of a desk to the floor below.
5. What is a vacuum?
6. In a vacuum, which would fall faster: a brick or a leaf?

For each of the following three problems use the special situations on the "Freefall" notes to assign your variables.
7. An object is dropped from 40 meters above the ground. How fast is it going just before it hits the ground?

Variables: Equation: Solve:
8. A ball is thrown into the air going $50 \mathrm{~m} / \mathrm{s}$. If it was thrown from the ground and lands back on the ground, how long was it in the air?
Variables: $\quad \underline{\text { Equation: }}$
9. A rock is thrown into the air going $15 \mathrm{~m} / \mathrm{s}$. How high does it go?

Variables: Equation: Solve:

Now, remember that only thrown or dropped objects have an acceleration of $-9.8 \mathrm{~m} / \mathrm{s} 2$. A moving car, for instance, is not in freefall (unless it drives off a cliff, of course), so you would have to calculate its acceleration or be given its acceleration.
10. A ball rolls down a 2.5 meter long ramp in 4 seconds. If it started at rest, what was its acceleration? Variables: \quad Equation: $\underline{\text { Solve: }}$
11. A. Calculate the slopes of each of the line segments on the Position vs. Time graph.
B. Transfer these slopes to the velocity graph.
C. Transfer then to the acceleration graph.

Let's not forget how to do this....
12. A. Convert 10 mph (mi per hour) to miles per min.
B. Now convert your answer to meters per min.
$3.3 \mathrm{ft}=1 \mathrm{~m}$
$5280 \mathrm{ft}=1 \mathrm{mi}$
$12 \mathrm{in}=1 \mathrm{ft}$
$2.54 \mathrm{~cm}=1 \mathrm{in}$.

DNA basics		RNA -	Moves from nucleus to ribosomes.
DNA -	Found in the nucleus of all cells		Only 1 side of the ladder.
	Contain the characteristics of a cell.		Ribose sugar instead of deoxyribose
	Double helix (ladder structure)		A with $\mathrm{U}(\mathrm{U}$ not T) and C with G
	Ladder sides made up of a phosphate and deoxyribose sugar; ladder steps: nitrogen bases (A,T,C,G)	$\begin{aligned} & \text { DNA to } \\ & \text { mRNA } \end{aligned}$	A-transcription-moves to ribosome. NA-translation (in ribosomes).
	Nitrogen bases pair up as: A with T/ C with G.		

13. DNA, mRNA, or tRNA (could be more than one or even all).
A. Contains nitrogen bases.
B. Created in transcription.
C. \quad Must stay in the nucleus.
D. Created in replication.
14. Given the following genetic codes give the paired sequence.

