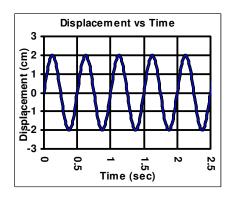
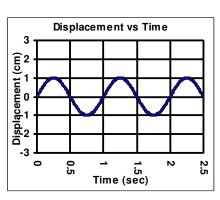
2009-10 PreAP Harmonic Motion 6

- 1. 30 ping pong balls are floating in water with a separation distance of 0.5m. Water waves are moving at a speed of 35m/s and a frequency of 7 Hz.
 - A. What is the wavelength of the wave?
 - B. How long does it take for the 3rd ping pong to be moved 3 m?
- 2. A pendulum is moved to planet Pidronium where the acceleration due to gravity is 1/8 the strength of the earth's. (Careful!) What is the change in frequency of the pendulum?
- 3. An open pipe has a third harmonic of 520 Hz. What is the length of the pipe if the speed of sound on this day is 352 m/s (*Boy*, *is it hot!*).
- 4. A closed pipe is 18 cm long. If the second possible harmonic is 1400 Hz, what is the speed of sound that day? (And is it a hot day?)
- 5. The fourth harmonic of a string has a frequency of "f". What is the frequency of the third harmonic?

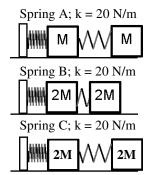


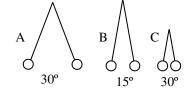

- 6. The pulse wave shown above is sent down a slinky.
 - A. What kind of wave is it?

- B. Is this the same kind of wave as a sound wave?
- C. If the other end is fixed, what happens?
- D. If the other end is not fixed (free), what happens?
- 7. An orchestra is playing over a radio. Let's consider just two of the instruments: the flute and the tuba.
 - A. Which instrument has a higher pitch?
 - B. Which has a longer wavelength?
 - C. Which plays higher frequency notes?
 - D. If they play together, which notes gets to your ear first?
 - E. Which instrument's notes has a faster speed?
 - F. So, how does frequency affect the speed of sound?
 - G. If the tuba plays a very high note and the flute plays a very low note, they could play the same pitch, but would sound different (different characteristics) because they have different: ______.
- 8. While two notes play at the same time 3 beats are heard. If one note is 345Hz and the other is higher, what is the second frequency?
- 9. A speaker pushes air pulses into the room.
 - A. What is it producing?
 - B. When is it audible (two ways)?
 - C. What is the same between the speaker and the air?
 - D. Which is compression when it pushes or pulls?
 - E. What is the opposite of compression?

For the next two problems you will need to do some calculating.

- 10. Two notes play together: 340 Hz and 510 Hz.
 - A. Do they sound good together (do they harmonize)?
 - B. Why?
- 11. Two other notes play together: 550 Hz and 830 Hz.
 - A. Do they sound good together?
 - B. Why?
- 12. A sound increases by 30 dB.
 - A. What fundamental part of the sound changed?
 - B. By how much did the intensity of the sound change?




Spring ____ Pendulum ____

Spring ____ Pendulum ____

Spring ____ Pendulum ____

13. Match the pendulums, springs, and graphs.

And do TAKS

2009-10 PreAP Harmonic Motion 6

1. 30 ping pong balls are floating in water with a separation distance of 0.5m. Water waves are moving at a speed of 35m/s and a frequency of 7 Hz.

- B. How long does it take for the 3rd ping pong to be moved 3 m?

 Never the energy moves , not the particles

 Two of the medium, Basic wave property.
- A pendulum is moved to planet Pidronium where the acceleration due to gravity is 1/8 the strength of the earth's. (Careful!) What is the change in frequency of the pendulum?

 $T = \sqrt{\frac{1}{8}} = \sqrt{8} = so F = \frac{1}{\sqrt{8}} = by .35$

3. An open pipe has a third harmonic of 520 Hz. What is the length of the pipe if the speed of sound on this day is

352 m/s (Boy, is it hot!). $f = \frac{nV}{2L}$ $L = \frac{nV}{2F} = \frac{3(352)}{2(520)} = 1.02 \text{ m}$ Pipe use 2L = 4bl

4. A closed pipe is 18 cm long. If the second possible harmonic is 464 Hz, what is the speed of sound that day? (And is it a hot day?)

Ind is it a hot day?) $f = \frac{nV}{4L} \frac{4Lf}{N} = V = \frac{4(.18)(1400)}{3} = 336 \text{ m/s}$ $\frac{70}{-461}$

5. The fourth harmonic of a string has a frequency of "f". What is the frequency of the third harmonic? $H_1 = \frac{\mathcal{E}}{4} \mathcal{L}^{\#of} \frac{AN}{6v^* H_4} \qquad \text{Then} \quad H_3 = 3\left(\frac{\mathcal{E}}{4}\right) \qquad -\frac{2\omega}{-4b^3}.$

- The pulse wave shown above is sent down a slinky.

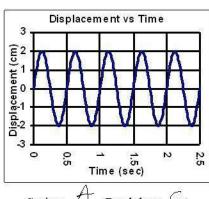
 - A. What kind of wave is it? transverse B. Is this the same kind of wave as a sound wave? No C. If the other end is fixed, what happens? reflects, but inverts (under nests)
 - D. If the other end is not fixed (free), what happens? does not invert (some side)
- 7. An orchestra is playing over a radio. Let's consider just two of the instruments: the flute and the tuba.
 - A. Which instrument has a higher pitch? Flute
 - B. Which has a longer wavelength? toba
 - C. Which plays higher frequency notes? Flute
 - D. If they play together, which notes gets to your ear first? Same time
 - E. Which instrument's notes has a faster speed? Same
 - F. So, how does frequency affect the speed of sound? does not
 - G. If the tuba plays a very high note and the flute plays a very low note, they could play the same pitch, but would sound different (different characteristics) because they have different: timbres. (#oF harmonics
- 8. While two notes play at the same time 3 beats are heard. If one note is 345Hz and the other is higher, what is the second frequency? 348HZ
- 9. A speaker pushes air pulses into the room.
 - A. What is it producing? Sound waves B. When is it audible (two ways)? loud enough or high enough freq.
 - C. What is the same between the speaker and the air? fret.
 - D. Which is compression when it pushes or pulls?
 - E. What is the opposite of compression?

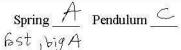
vare faction

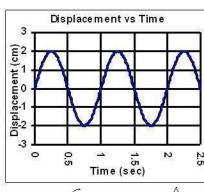
2009-10 PreAP Harmonic Motion 6—p2

For the next two problems you will need to do some calculating.

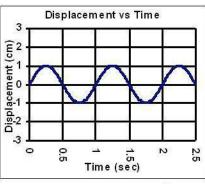
$$510 - 340 = 170$$

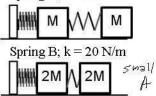

10. Two notes play together: 340 Hz and 510 Hz.


11. Two other notes play together: 550 Hz and 830 Hz.

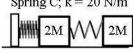

A. Do they sound good together?
$$ND$$

12. A sound increases by 30 dB.

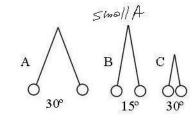

- A. What fundamental part of the sound changed? amplitude
- B. By how much did the intensity of the sound change?



13. Match the pendulums, springs, and graphs.



Pendulum β B Spring


Spring A; k = 20 N/m

Spring C; k = 20 N/m

And do TAKS

