1. 30 ping pong balls are floating in water with a separation distance of 0.5 m . Water waves are moving at a speed of $35 \mathrm{~m} / \mathrm{s}$ and a frequency of 7 Hz .
A. What is the wavelength of the wave?
B. How long does it take for the 3rd ping pong to be moved 3 m ?
2. A pendulum is moved to planet Pidronium where the acceleration due to gravity is $1 / 8$ the strength of the earth's. (Careful!) What is the change in frequency of the pendulum?
3. An open pipe has a third harmonic of 520 Hz . What is the length of the pipe if the speed of sound on this day is $352 \mathrm{~m} / \mathrm{s}$ (Boy, is it hot!).
4. A closed pipe is 18 cm long. If the second possible harmonic is 1400 Hz , what is the speed of sound that day? (And is it a hot day?)
5. The fourth harmonic of a string has a frequency of " f ". What is the frequency of the third harmonic?

6. The pulse wave shown above is sent down a slinky.
A. What kind of wave is it?
B. Is this the same kind of wave as a sound wave?
C. If the other end is fixed, what happens?
D. If the other end is not fixed (free), what happens?
7. An orchestra is playing over a radio. Let's consider just two of the instruments: the flute and the tuba.
A. Which instrument has a higher pitch?
B. Which has a longer wavelength?
C. Which plays higher frequency notes?
D. If they play together, which notes gets to your ear first?
E. Which instrument's notes has a faster speed?
F. So, how does frequency affect the speed of sound?
G. If the tuba plays a very high note and the flute plays a very low note, they could play the same pitch, but would sound different (different characteristics) because they have different: \qquad
8. While two notes play at the same time 3 beats are heard. If one note is 345 Hz and the other is higher, what is the second frequency?
9. A speaker pushes air pulses into the room.
A. What is it producing?
B. When is it audible (two ways)?
C. What is the same between the speaker and the air?
D. Which is compression when it pushes or pulls?
E. What is the opposite of compression?

For the next two problems you will need to do some calculating.
10. Two notes play together: 340 Hz and 510 Hz .
A. Do they sound good together (do they harmonize)?
B. Why?
11. Two other notes play together: 550 Hz and 830 Hz .
A. Do they sound good together?
B. Why?
12. A sound increases by 30 dB .
A. What fundamental part of the sound changed?
B. By how much did the intensity of the sound change?

Spring \qquad Pendulum \qquad

Spring \qquad Pendulum \qquad

Spring \qquad Pendulum ___
\qquad

Spring C; k $=20 \mathrm{~N} / \mathrm{m}$

13. Match the pendulums, springs, and graphs.

And do TAKS
And

Day 24—Linear Motion

Speed (or Velocity) —How fast an object changes positions.

Speed equals distance divided by time.

Acceleration -How fast an object changes speed.

Acceleration equals change of speed divided by time.

Momentum-How hard to stop a moving object. Momentum is negative if moving to the left.

Momentum equals mass times velocity.

Conservation of Momentum:
$\mathbf{p}_{\text {total before }}=\mathbf{p}_{\text {total after }}$
When objects collide or push off from each other, the total momentum before must equal all of the momentum after.

1. A. Measuring from the front of the race car, how far does it travel?
B. If the timer reads seconds, how long did it take for it to travel that distance?
C. Calculate the speed of the race car under the diagram.
D. If the race car is 1200 kg , calculate its momentum.
2. Slim Jim throws a ball to the left.
A. How much total momentum is there before he throws the ball?
B. Which will be moving faster afterwards: Jim or the ball?
C. Which will have more momentum afterwards: Jim or the ball?

3. Two cars are moving $24 \mathrm{~m} / \mathrm{s}$ to the right. Both stop at a stop sign.
A. What is the final velocity of each vehicle when they stop (write it under the stop sign)? $\mathrm{V}_{\text {final }}=$
B. Which one had the bigger change of speed?
C. The motorcycle takes 8 seconds to stop. Calculate its acceleration.
D. The car takes only 6 seconds to stop. Calculate its acceleration.
4. A cannon is at rest before hand and then shoots a cannonball.
A. How much total momentum is there before?
B. How much momentum does the cannon have afterwards
 (put this under the diagram)?
C. Since the ball must have as much momentum as the cannon, under the diagram, calculate the velocity of the ball afterwards.
