

1 cycle after A is \qquad ; to A (side to side), how big is it's amplitude?

If the pendulum starts at A , how many times does it pass point C in 1 cycle?

An spring has a period of 4 seconds. What is its frequency?
B) What is its frequency?

Mark 1 cycle of the harmonic motion.
Starting at 1.5 secs, when does the 2 nd cycle end:
Number of cycles shown is \qquad -.
$\operatorname{Period}(T)=$
Frequency $(\mathrm{f})=$
Equilibrium position $=$ Amplitude (A) =

1. Give the variables and units for the following quantities:
A. Period: \qquad ; B. Amplitude: \qquad ; C. Frequency: \qquad ; D. Wavelength: \qquad
2. If the period of a pendulum is 4 seconds, find the frequency of the pendulum.

Use your "Harmonic Motion Table" notes for the following.
3. What is "dampening"?
4. What is the equation for the speed of a wave?
5. What do we call this symbol: λ ?
6. A wave is moving $25 \mathrm{~m} / \mathrm{s}$ and has a frequency of 80 Hz . What is the wavelength of the wave?
7. What is the medium that sound travels thru to your ears?
8. On the graph at the right...
A. What is the wavelength of the wave?
B. Mark a trough and a crest.
9. For sound, how many decibels is twice as loud?
10. If a sound is 40 dB , how many decibels is twice as loud?
11. Find the period of a pendulum that is 80 cm long, realizing to use standard units.

12. How long is a pendulum that has a period of 0.84 seconds?
13. What is the period of a spring-mass system if the spring has a spring constant of $25 \mathrm{~N} / \mathrm{m}$ with a 1.5 kg object on it. (Make sure to use the spring-mass system equation-not the one for a pendulum.)
14. A spring-mass system has a period of 0.15 seconds and a 150 g on it. What is the spring constant for the spring?

Remember again that the period is how long for 1 cycle OR $\quad T=$ \#seconds/\#cycles. The frequency is how many cycles occur each second OR $f=$ \#cycles/\#seconds. Add these two formulas on the table in the first column.
15. A pendulum swings back and forth 14 times in 8 seconds. What is the pendulum's period?

And have these TAKS homeworks done: Conservation of Mass; Solutions; Properties of Water. You will have to show them to me and grade them by yourself before or after class.

