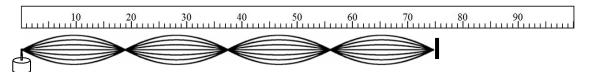
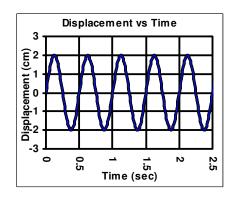

2011-12 PreAP Harmonic Motion 13

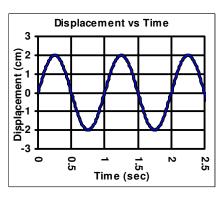
- 1. Two beach balls are floating in water with a separation distance of 3 m. When the first ball is pushed down 5 cm into the water it vibrates up and down 6 times per second. The second ball starts to bounce 0.2 seconds later.
- A. What is the amplitude of the first ball?
- B. Calculate the speed of the wave.
- C. Calculate the wavelength of the wave.
- 2. Longitudinal or Transverse wave?

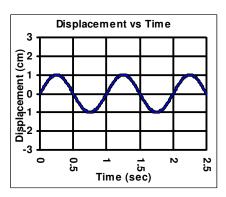
A	A standing wave on a string.	C.	A pendulum
В	Sound	D.	The pulse on the slinky shown below


- 3. The pulse wave shown at the right is sent down a slinky from the left side.
 - A. If the other end is fixed, what happens?
 - B. If the other end is not fixed (free), what happens?
- 4. Words that we use for greater loudness include: more d_____; more a_____; greater i______
- 5. An orchestra is playing over a radio. Let's consider just two of the instruments: the flute and the tuba.
 - A. Which instrument probably has a higher pitch?
 - B. Which has a longer wavelength?
 - C. Which plays higher frequency notes?
 - D. If they play together, which notes gets to your ear first?
 - E. Which instrument's notes has a faster speed?
 - F. So, how does frequency affect the speed of sound?
 - G. If the tuba plays a very high note and the flute plays a very low note, they could play the same pitch (same f_______, but would sound different because they have different: t______. (The two notes have different amounts [intensities] of the harmonics above the pitch.)

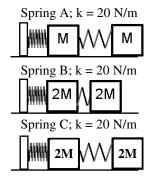
And, by the way: frequency is something we can measure with scientific instruments; pitch is how humans perceive frequency. Just saying....

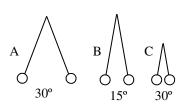

- 6. While two notes play at the same time, 3 beats per second are heard. One note is 345Hz
 - A. Give the two possible frequencies of the other note.
 - B. The second note can be adjusted. To make the notes more in-tune, the number of beats per second should increase or decrease?
- 7. A speaker pushes air pulses into the room.
 - A. What is it producing?
 - B. When is it audible (two ways)?
 - C. What is the same between the speaker and the air?
 - D. Which is compression when it pushes or pulls?
 - E. What is the opposite of compression (see your "Harmonic Motion Table")?
- 8. A sound increases from by 1.0×10^{-4} W/m² to 1.0×10^{-3} W/m².
 - A. What fundamental part of the sound changed?
 - B. By how many decibels did the sound change?
 - C. Divide the large intensity by the smaller intensity and you get:
 - D. So, 10 more dB = how much more intensity?
 - E. Divide the intensity of 90 dB by the intensity of 60 dB and you get:
 - F. So, +30 dB = how much more intensity?


Intensity (W/m)	aB
1.0×10 ⁻¹²	0
1.0×10 ⁻¹¹	10
1.0×10 ⁻¹⁰	20
1.0×10 ⁻⁹	30
1.0×10 ⁻⁸	40
1.0×10 ⁻⁷	50
1.0×10 ⁻⁶	60
1.0×10 ⁻⁵	70
1.0×10 ⁻⁴	80
1.0×10 ⁻³	90
1.0×10 ⁻²	100
1.0×10 ⁻¹	110
1.0×10^{0}	120

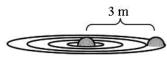

Intensity (W/m²)

- 9. A string is vibrated on the left side by an adjustable mechanical vibrator. The right side is fixed.
 - A. The above shape is known as a:
 - B. Will this type of shape (and the others) happen at every frequency of vibration?
 - C. These shapes occur only when the driving frequency matches the r_____ frequency (or frequencies) of the string.
 - D. As the number of antinodes increases, the amplitude of each antinode:
 - E. So (for sound) the LOUDEST possible harmonic is always the:
 - F. Give the three longest possible wavelengths for this length string.
- 10. Match the pendulums, springs, and graphs below.





Spring ____ Pendulum ___


Spring ____ Pendulum ___

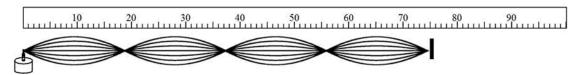
Spring ____ Pendulum ____

2011-12 PreAP Harmonic Motion 13

- 1. Two beach balls are floating in water with a separation distance of 3 m. When the first ball is pushed down 5 cm into the water it vibrates up and down 6 times per second. The second ball starts to bounce 0.2 seconds later.
- A. What is the amplitude of the first ball? 5cm (will bob 10cm from top to bottom)
- B. Calculate the speed of the wave. $S = \frac{D}{T} = \frac{3m}{12sec} = 15 \text{ m/sec}$
- C. Calculate the wavelength of the wave. $\sqrt{=} \epsilon_{\lambda}$
- 2. Longitudinal or Transverse wave?
 - A. TA standing wave on a string. (you pull it sideweys) C. The pulse on the slinky shown below.

- 3. The pulse wave shown at the right is sent down a slinky from the left side.
 - A. If the other end is fixed, what happens? inverts (returns opp. side)
 - B. If the other end is not fixed (free), what happens? comes back same side
- 4. Words that we use for greater loudness include: more decibels; more amplitude; greater intensity.
- 5. An orchestra is playing over a radio. Let's consider just two of the instruments: the flute and the tuba.
 - A. Which instrument probably has a higher pitch? Flute
 - B. Which has a longer wavelength? tuba (longer and lower note)
 - C. Which plays higher frequency notes? Flute (shorter 1)
 - D. If they play together, which notes gets to your ear first? 5 ame + ime.
 - E. Which instrument's notes has a faster speed? Same medium (200), same velocity
 - F. So, how does frequency affect the speed of sound? does n't
 - G. If the tuba plays a very high note and the flute plays a very low note, they could play the same pitch (same $f_{\nu n \beta = men + \beta |} f_{\nu eq \nu en \beta g}$, but would sound different because they have different: $t_{imbre \beta}$. (The two notes have different amounts [intensities] of the harmonics above the pitch.)F

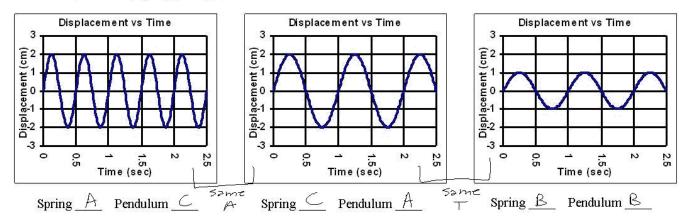
And, by the way: frequency is something we can measure with scientific instruments; pitch is how humans perceive frequency. Just saying....

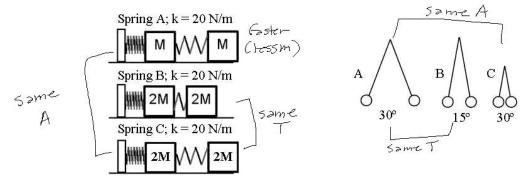

- 6. While two notes play at the same time 3 beats per second are heard. One note is 345Hz
 - A. Give the two possible frequencies of the other note. $+3 = 348 \, \text{Hz} / -3 = 342 \, \text{Hz}$
 - B. The second note can be adjusted. To make the notes more in-tune, the number of beats per second should increase or decrease?

 no bests = in tone
- 7. A speaker pushes air pulses into the room.
 - A. What is it producing? longitudinal (compression) waves
 - B. When is it audible (two ways)? boun 20 -20,000 Hz or loud enough (enough
 - C. What is the same between the speaker and the air? Freq t.
 - D. Which is compression when it pushes or pulls?
 - E. What is the opposite of compression (see your "Harmonic Motion Table")?
- 8. A sound increases from by 1.0×10^{-4} W/m² to 1.0×10^{-3} W/m².
 - A. What fundamental part of the sound changed? amplitude
 - B. By how many decibels did the sound change? 10 3\$
 - C. Divide the large intensity by the smaller intensity and you get: 10
 - D. So, 10 more dB = how much more intensity? 10 times 25 intense
 - E. Divide the intensity of 90 dB by the intensity of 60 dB and you get:

$$\frac{|X|0^{-3}}{|X|0^{-4}} = |000$$

F. So, $\pm 30 \text{ dB} = \text{how much more intensity?}$ 1000 $\pm \text{imes}$


Intensity (W/m ²)	dB
1.0×10^{-12}	0
1.0×10^{-11}	10
1.0×10^{-10}	20
1.0×10 ⁻⁹	30
1.0×10 ^{−8}	40
1.0×10 ⁻⁷	50
1.0×10 ⁻⁶	60
1.0×10 ⁻⁵	70
1.0×10 ^{−4} *	80
1.0×10 ⁻³ ∗k	90
1.0×10^{-2}	100
1.0×10^{-1}	110
1.0×10^{0}	120



- 9. A string is vibrated on the left side by an adjustable mechanical vibrator. The right side is fixed.
 - A. The above shape is known as a: harmonic
 - B. Will this type of shape (and the others) happen at every frequency of vibration? N^{D}
 - C. These shapes occur only when the driving frequency matches the resonant frequency (or frequencies) of the string.
 - D. As the number of antinodes increases, the amplitude of each antinode: decreases
 - E. So (for sound) the LOUDEST possible harmonic is always the: natural or Fundamental
 - F. Give the three longest possible wavelengths for this length string.

$$(75)_2 = (1.5 \text{ m})_1 \cdot (75 \text{ m})_1 \cdot \frac{1.5}{3} = (5 \text{ m})_1 \cdot (75 \text{ m})_1 \cdot \frac{1.5}{3} = (5 \text{ m})_1 \cdot (75 \text{ m})_1 \cdot (7$$

10. Match the pendulums, springs, and graphs below.

