

1. Consider point e on the pendulum at the left.
A. Is the velocity at point $\mathrm{e}+,-$, or 0 ?
B. Predict if the acceleration at point e is,+- , or 0 .
(This is a prediction. Don't worry if it is right or wrong.)

To calculate the average acceleration at point e we need two velocities on either side. Let's say that the velocity at point d is $+1 \mathrm{~m} / \mathrm{s}$ (just for ease) before it gets to point e and is $-1 \mathrm{~m} / \mathrm{s}$ after point e. Let's make the time from d back to d to be 0.5 seconds.
C. * Remembering that $\mathrm{a}=\Delta \mathrm{v} / \mathrm{t}=\left(\mathrm{v}_{\mathrm{f}}-\mathrm{v}_{\mathrm{i}}\right) / \mathrm{t}$, calculate the average acceleration at point e .
D. Was your prediction correct?

Often people think that the acceleration is zero at points a and d because the object has a velocity of zero. Remember a projectile thrown into the air. At the very top its velocity is also zero, but it still has gravity pulling down on it. It is still accelerating downward. One point cannot define an acceleration! Also, if $v_{d}=+$ and $v_{e}=0$, then that is a negative change of velocity and a negative acceleration.
E. Using the same logic. Is the acceleration at point $\mathrm{a}+,-$, or 0 ?
2. What about point c , when the pendulum bob passes its lowest point?
A. Is the velocity at point $\mathrm{c}+,-$, or 0 ?
B. Predict if the acceleration at point c is,+- , or 0 .
C. * Notice that at point b the bob is at the same height as point d. So is $V_{b}<,>$, or $=$ to V_{d} ?
D. Let's again use $+1 \mathrm{~m} / \mathrm{s}$ as v_{d} (going to the right). Therefore $\mathrm{v}_{\mathrm{b}}=$
E. * If the time from b to d is $0.75 \mathrm{~m} / \mathrm{s}$, calculate the average acceleration at point c .
F. Was your prediction correct?

Notice that in this case the acceleration is a minimum $\left(0 \mathrm{~m} / \mathrm{s}^{2}\right)$ when the velocity is a maximum. Strange, huh?

3. Now, what about springs? Imagine a very large mass, spring, and ruler. The ruler measures meters. We will say there is no friction on the mass.
A. * The spring is relaxed in the first diagram (equilibrium position), so Slim Jim is pulling with how much force?
B. * Slim Jim then stretches the spring, as shown. Calculate the spring constant.
C. As Jim stretches the spring does the force of the spring increase, decrease, or stay the same?

D. So, since $\mathrm{F}=\mathrm{ma}$, as he stretches the spring more and more, the acceleration of the mass when released will increase, decrease, or stay the same?

Slim Jim releases the mass and it vibrates back and forth.

E. Calculate the period of the spring.
F. * What is the amplitude of the spring's motion?
G. Where is the acceleration a maximum (give the position)?
H. Where is its KE a maximum (give the position)?
I. Where is the potential energy a minimum?
J. How far does it move from side to side?
K. How long does it take to get to the other side?

We are going to rework the spring constant experiment we did

1C) $\mathrm{a}=\Delta \mathrm{v} / \mathrm{t}=\left(\mathrm{v}_{\mathrm{f}}-\mathrm{v}_{\mathrm{i}}\right) / \mathrm{t}=(-1-(+1)) / 0.5=-2 / 0.5=-4 \mathrm{~m} / \mathrm{s}^{2}$
2B) $v_{b}=v_{d}$ (same height) \quad 2E) $a=0$, same velocity
3A) 0 N .
3B) $k=N / m$, so $2,000 \mathrm{~N} / 5 \mathrm{~m}=400 \mathrm{~N} / \mathrm{m}$
3F) $5 \mathrm{~m} \quad 4 \mathrm{~B}) 100 \mathrm{~g}=0.1 \mathrm{~kg} \quad \mathrm{Fw}=\mathrm{mg}$, so $\mathrm{Fw}=0.1(10)=1 \mathrm{~N}$
$4 \mathrm{C}) \mathrm{x}^{\prime}=0.31 \mathrm{~m}$ so $\left.\left.\mathrm{x}=0.31-0.25=0.06 \mathrm{~cm} \quad 4 \mathrm{E}\right) \mathrm{N} / \mathrm{m} \quad 4 \mathrm{~F}\right)$ pu N on y -axis.

