1. Period A. The number of cycles per second. 2. Equilibrium position \quadB. A unit of one cycle per second. 3. Amplitude\quadC. The size or strength of a cycle. 4. Dame it takes to complete one cycle. 5. Frequency	8. Where is the equilibrium position for this pendulum? If the pendulum starts at C going to the right, where does 1 cycle end? From letter A to letter \qquad would be the amplitude. If the pendulum starts at A, how many times does it pass point C in 1 cycle?
9. A spring vibrates between points A and C. Where is its equilibrium position? If the spring starts at position A , how much of a cycle does it complete from A to C ? If the spring moves 10 cm from C to A (side to side), how big is it's amplitude?	10. An spring has a period of 4 seconds. What is its frequency? 11. A pendulum has a frequency of 3 Hz . What is its period?
12.	13. Position vs. Time
1 cycle after A is E, so 2 cycles after D is \qquad . $1 / 2$ cycle after G is I, so $1 / 4$ cycle before M is \qquad . Number of complete cycles shown is \qquad Period (T) = Frequency $(\mathrm{f})=$ Equilibrium position $=$ Amplitude (A) =	Mark 1 cycle of the harmonic motion. Starting at 1.5 secs, when does the 2 nd cycle end: Number of cycles shown on the graph is \qquad Period (T) = Frequency (f) = Equilibrium position $=$ Amplitude (A) =

Understanding frequency vs period. You know that $T=1 / f$ or $f=1 / T$, where f is frequency and T is the period.
14. A pendulum has a period of 2 seconds.
A. That means it takes \qquad seconds for it to complete one full swing or one c \qquad _.
B. * Calculate the frequency of the pendulum.
B. $1 / 2=0.5 \mathrm{~Hz}$
C. This is how frequent the motion is. It completes \qquad cycles each second.
C. $1 / 2$ times
15. A second pendulum has a period of 0.25 seconds. f
A. That means it takes \qquad seconds for it to complete one full swing or one c \qquad -.
B. * Calculate the frequency of the pendulum.
C. This is how frequent the motion is. It completes \qquad cycles each second.
B. $1 / .25=4 \mathrm{~Hz}$
C. 4 times

