PreAP Harmonic Motion 7

- 1. String is vibrated at different frequencies. At certain frequencies it shows the shapes at the left, called standing waves. If they are all from the same string they are called harmonics. H₁ means harmonic 1. f₁ means the frequency of harmonic 1. λ_1 means the wavelength of harmonic 1. Other names for harmonic 1: natural frequency; fundamental. **Study** the table and then answer the following:
 - A. * To get from f_1 (15Hz) to f_4 you:
 - B. To get from f_5 to f_1 you:
 - C. To get from λ_1 to λ_3 you:
 - D. * To get from λ_4 to λ_1 you:
 - E. * To get from f_3 to f_2 you (two steps):
 - F. To get from λ_5 to λ_4 you:
 - G. * The wavelength of the fundamental is how many L?
- 2. * A different string has a third harmonic with a frequency of "f", what is the frequency of harmonic 6?
- 3. * Yet a different string has $\lambda_2 = L$, what is the wavelength of its third harmonic?
- 4. If the fifth harmonic of a string has a frequency of f, what is the frequency of the second harmonic?
- 5. A string has a length of 40 cm. What is the wavelength of the fundamental (λ_1) ?
- 6. * A 70 cm long string has a third harmonic of 120 Hz.
 - A. What is the wavelength of the fundamental?
 - B. What is the fundamental's frequency (this string's natural frequency)?
 - C. Calculate the wave speed.

- 7. A 0.75m string is vibrated at different frequencies.A. These shapes are known as what?
 - B. Give the three names for shape 1.
 - C. Fill in the chart. (*Notice the asterisks*)
 - D. Calculate the period of harmonic 3.
 - E. What is the velocity of harmonic 2's wave?
 - F. What is the velocity of harmonic 5's wave?
 - G. What changes if the string is tightened?

Copyright © 2013, C. Stephen Murray

cstephenmurray.com

PreAP Harmonic Motion 3—p3

5

4

3

2 1

0

-1

-2

-3

-4 -5

0

0.2

Displacement (m)

- 10. Two waves are shown above. If they were to pass thru a string at the same time they would combine together (like on the slinky). This is known as *superposition*.
 - A. * Wave 1's wavelength is: It's amplitude is:
 - B. Wave 2's wavelength is: It's amplitude is:

Notice the circle on both waves. Here is how you do the superposition: add the amplitudes together.

- C. * What is the total amplitude of the two circled positions?
- D. Put this new, net amplitude together onto the blank graph at 0.1 seconds.
- E. Do this for each point on the two graphs and draw the combined wave.

Q1A) mult. by 4 Q1D) mult by 4 Q1E) Div. by 3 then mult by 2 Q1G) 2L Q2) $f_1 = f/3$. So $f_2 = 6f/3 = 2f$. 3) Well $\lambda_1 = 2L$, so $\lambda_3 = 2L/3$ or (looking at the picture above) $\lambda_3 = (2/3)L$. Q6) A. 2(.30) = 0.6 m B. 120/3 = 40 Hz C. $v = f\lambda = 40(0.6) = 24$ m/s Q7C) $f_1 = f_3/3$ $\lambda_1 = 2L$ 8C) 5 nodes

0.5

Position (m)

0.7

0.9

Combined Wave

0.4

0.3