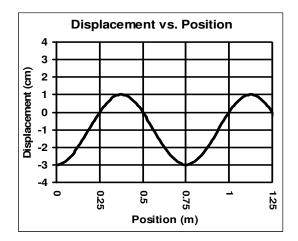
PreAP Harmonic Motion 2


1. Harmonic Motion: Yes or No?		2. Period, Frequency, or Amplitude?
Pendulum: Ocean waves: A child on a swing: Jumping Jacks: Bouncing spring:	A bouncing ball: A ruler pulled from one side and released: A person jumping up and down: A spinning ball:	 Doesn't change period. More of this means more energy. Increases as a pendulum swings back and forth faster. Measured in meters or centimeters. This decreases with a smaller swing. If the frequency increases, this decreases. If it swings back and forth slower, this decreases. As it dampens, this decreases.

Use your "Harmonic Motion Table" notes for the following.

3. Give the variables and units for the following quantities:

A. Period: ______; B. Amplitude: ______; C. Frequency: ______; D. Wavelength: _____

- 4. If the period of a pendulum is 4 seconds, find the frequency of the pendulum.
- 5. What is "dampening"?
- 6. What is the equation for the speed of a wave?
- 7. What do we call this symbol: λ ?
- 8. A wave is moving 25 m/s and has a frequency of 80 Hz. What is the wavelength of the wave?
- 9. What is the *medium* that sound travels thru to your ears?
- 10. On the graph at the right...
 - A. What is the wavelength of the wave?
 - B. Mark a trough and a crest.
- 11. For sound, how many decibels is twice as loud?
- 12. If a sound is 40 dB, how many decibels is twice as loud?
- 13. * Find the period of a pendulum that is 80 cm long, realizing to use standard units.

that has a period of 3.2 seconds?

14. * How long is a pendulum that has a period of 0.84 seconds? (Math help at the right.)

 $T = 2\pi \sqrt{\frac{\ell}{g}}$ $3.2 = 6.28 \sqrt{\frac{\ell}{10}}$ $\frac{3.2}{6.28} = \frac{6.28}{6.28} \sqrt{\frac{\ell}{10}}$ $0.2597 = \frac{\ell}{10}$ $10(0.2597) = \ell$ $\ell = 2.597m = 259.7cm$ $0.5096 = \sqrt{\frac{\ell}{10}}$

Example: How long is a pendulum

15. What is the period of a spring-mass system if the spring has a spring constant of 25 N/m with a 1.5 kg object on it. (*Use the spring equation—not the one pendulum.*)

16. * A spring-mass system has a period of 0.15 seconds and 150 g hanging on it (*use standard units*). What is the spring constant for the spring?

PreAP Harmonic Motion 2

Remember again that the period is how long for 1 cycle OR sec per cycle so, T = #seconds/#cycles. The frequency is how many cycles occur each second OR cycles/sec so, f = #cycles/#seconds. Add these 2 formulas on the table in the 1st column.

- 17. A pendulum swings back and forth 14 times in 8 seconds. What is the pendulum's period?
- 18. * A spring oscillates (moves back and forth) 35 times in 10 seconds. Calculate its frequency.

- 13: 1.78 sec 14. 0.179 m or 17.9 cm 16. 263 N/m
- 18. f = #cycles/#sec = 35 cycles/10sec = 3.5 Hz