PreAP Harmonic Motion 1

1. Period A. The number of cycles per second. 2. Equilibrium position \quadB. A unit of one cycle per second. 3. Amplitude\quadC. The size or strength of a cycle. 4. Damping it takes to complete one cycle. 5. Frequency	8. Where is the equilibrium position for this pendulum? If the pendulum starts at C going to the right, where does 1 cycle end? From letter A to letter \qquad would be the amplitude. If the pendulum starts at A , how many times does it pass point C in 1 cycle?
9. A spring vibrates between points A and C. Where is its equilibrium position? If the spring starts at position A , how much of a cycle does it complete from A to C ? If the spring moves 10 cm from C to A (side to side), how big is it's amplitude?	10. An spring has a period of 4 seconds. What is its frequency? 11. A pendulum has a frequency of 3 Hz . What is its period?
12.	13. Position vs. Time
1 cycle after A is E , so 2 cycles after D is \qquad . $1 / 2$ cycle after G is I, so $1 / 4$ cycle before M is \qquad . Number of complete cycles shown is \qquad Period (T) = Frequency (f) = Equilibrium position $=$ Amplitude (A) =	Mark 1 cycle of the harmonic motion. Starting at 1.5 secs, when does the 2 nd cycle end: Number of cycles shown on the graph is \qquad . Period $(T)=$ Frequency (f) = Equilibrium position $=$ Amplitude (A) =

Understanding frequency vs period. You know that $T=1 / f$ or $f=1 / T$, where f is frequency and T is the period.
14. A pendulum has a period of 2 seconds.
A. That means it takes \qquad seconds for it to complete one full swing or one c \qquad _.
B. * Calculate the frequency of the pendulum.
B. $1 / 2=0.5 \mathrm{~Hz}$
C. This is how frequent the motion is. It completes \qquad cycles each second.
C. $1 / 2$ times
15. A second pendulum has a period of 0.25 seconds. f
A. That means it takes \qquad seconds for it to complete one full swing or one c \qquad -.
B. * Calculate the frequency of the pendulum.
C. This is how frequent the motion is. It completes \qquad cycles each second.
B. $1 / .25=4 \mathrm{~Hz}$
C. 4 times

16. Slim Jim is running $3 \mathrm{~m} / \mathrm{s}$ when he grabs onto a long rope, becoming, himself, a human pendulum!
A. * Calculate how far above the ground Jim swings (his vertical height).
B. * If the rope is 5 m long, what is the angle the rope makes with the vertical when Slim Jim is at his highest part of his swing?

16A) Conservation of Energy
16B) Might find help on "Momentum 7", if you took notes, or on 2nd page of "Conservation of Momentum Practice".

