1. A person walks 15 m west, 10 m north, 25 m east, 6 m south, then another 8 m north. Calculate the person's displacement (magnitude and direction, please).

A person walks 15 m west, 10 m north, 25 m east, 6 m south, then another 8 m north.
A) $\mathrm{Xt}=$
B) $\mathrm{Yt}=$
$+10-6+8$
$12 m$
C) Using Xt and Yt, draw the triangle:
$-15+25$ 10 m
D) Calculate the resultant's magnitude and direction.
$R=\sqrt{100+144}=15.6 m \quad \theta=\tan ^{-1}\left(\frac{12}{10}\right)=50.2^{\circ}$

2. Person A walks 55 m at 38°. Then the person turns and walks 20 m north. A Person B starts at the same place as Person A . What direction and distance does Person B have to walk to walk straight to Person A's final position?
8. Person A walks 55 m at 38°. Then the person turns and walks 20 m north. A Person B starts at the same place as Person A. What direction and distance does Person B have to walk to walk straight to Person A's final position?

$$
\begin{array}{ll}
x_{1}=55 \cos 38^{\circ}=43.3 \mathrm{~m} & x_{t}=43.3 \mathrm{~m} \\
y_{1}=5551 \mathrm{~m} 38^{\circ}=33.9 \mathrm{~m} & y_{t}=53.9 \mathrm{~m} \\
x_{2}=0 \mathrm{~m} & \text { 年 }=420 \mathrm{~m}
\end{array}
$$

3. A plane flies 200 mph for 2 hours going 20°. Then it flies 250 mph for 1.5 hours going 120°. Calculate the planes total displacement (magnitude and direction, please).
4. A plane flies 200 mph for 2 hours going 20°. Then it flies 250 mph for 1.5 hours going 120°.

$$
\begin{aligned}
& \text { Calculate the planes total displacement (magnitude and direction, please). } \\
& \text { U, } 400 \mathrm{mi} a t 20^{\circ} \\
& \begin{array}{ll}
x_{1}=c 05=375.9 \mathrm{mi} & v_{2}=3752 t 120 \\
x_{2}=105=-187.5 \mathrm{mi}=1884
\end{array} \\
& y=5 i x=136.8 \quad y_{2}=\sin =324,8 \mathrm{mi}=461,6 \\
& \begin{array}{c}
\eta=\sqrt{x^{2}+y^{2}}=498,5 \mathrm{mi} \\
2 t 67,8^{\circ}
\end{array}
\end{aligned}
$$

An object (like, say, a pudding cup) is launched from the ground at an angle of 30° and a velocity of $40 \mathrm{~m} / \mathrm{s}$. If it lands back on the ground, calculate its range.

1. An object is shot horizontally from a 24 m cliff going $65 \mathrm{~m} / \mathrm{s}$. How far away does it land? (This could also be a person running along a cliff and jumps horizontally, a plane dropping something horizontally, or any other example that says "horizontally".)
2. An object is shot horizontally from a 24 m cliff going $65 \mathrm{~m} / \mathrm{s}$. How far away does it land?

$$
\begin{aligned}
& \Delta y=(v i t)+\left(\frac{1}{2} \Delta t^{2}\right) \\
& -24=0+\left(-4,9 t^{2}\right) \\
& t=(2.21 \mathrm{sec}-5 \mathrm{w} \\
& S=\frac{D}{T} \\
& D=S T=65(2.21)=-143.7 \mathrm{~m}
\end{aligned}
$$

An object, like a monkey, is shot $28 \mathrm{~m} / \mathrm{s}$ at an angle of 65°.
A) What is its final x-velocity?
B) How high in the air does it go? (Find "how high it goes" or "it's highest point" or "it goes thru a hoop at its top point" or "how high must the ceiling be".)
A) It's final x-velocity is the same as its initial x-velocity because it is at constant velocity in the x-direction and $a_{x}=0 \mathrm{~m} / \mathrm{s}^{2}$.

