1. A person walks 15 m west, 10 m north, 25 m east, 6 m south, then another 8 m north. Calculate the person's displacement (magnitude and direction, please).

A person walks 15 m west, 10 m north, 25 m east, 6 m south, then another 8 m north.

- Person A walks 55 m at 38°. Then the person turns and walks 20 m north. A Person B starts at the same place as Person A. What direction and distance does Person B have to walk to walk straight to Person A's final position?
 - 8. Person A walks 55 m at 38°. Then the person turns and walks 20 m north. A Person B starts at the same place as Person A. What direction and distance does Person B have to walk to walk straight to Person A's final position?

What direction and distance does Person B have to walk to walk straight to Person A's fix
$$X_1 = 55 \cos 38^\circ = 43.3m$$

$$Y_2 = 55 \sin 38^\circ = 33.9m$$

$$X_3 = 53.9m$$

$$Y_4 = 53.9m$$

$$Y_2 = +20m$$

$$Y_2 = +20m$$

$$Y_3 = 69.1m$$

$$Y = 69.1m$$

- 3. A plane flies 200 mph for 2 hours going 20°. Then it flies 250 mph for 1.5 hours going 120°. Calculate the planes total displacement (magnitude and direction, please).
- 3. A plane flies 200 mph for 2 hours going 20°. Then it flies 250 mph for 1.5 hours going 120°.

Calculate the planes total displacement (magnitude and direction, please).

$$V_1,400 \text{ mi} \Rightarrow t \neq 70^{\circ}$$
 $V_2 = 375 \Rightarrow t \neq 170^{\circ}$
 $V_3 = 605 = 375 \cdot 9 \text{ mi}$
 $V_4 = 605 = 375 \cdot 9 \text{ mi}$
 $V_5 = 67 \cdot 8^{\circ}$
 $V_7 = 67 \cdot 8^{\circ}$
 $V_7 = 67 \cdot 8^{\circ}$
 $V_7 = 67 \cdot 8^{\circ}$

An object (like, say, a pudding cup) is launched from the ground at an angle of 30° and a velocity of 40 m/s. If it lands back on the ground, calculate its range.

- 8. An object (like, say, a pudding cup) is launched from the ground at an angle of 30° and a velocity of 40 m/s.

D. Use this t to find Δx .

1. An object is shot horizontally from a 24 m cliff going 65 m/s. How far away does it land? (This could also be a person running along a cliff and jumps horizontally, a plane dropping something horizontally, or any other example that says "horizontally".)

4. An object is shot horizontally from a 24 m cliff going 65 m/s. How far away does it land? 24m ? m An object, like a monkey, is shot 28 m/s at an angle of 65°.

- A) What is its final x-velocity?
- B) How high in the air does it go? (Find "how high it goes" or "it's highest point" or "it goes thru a hoop at its top point" or "how high must the ceiling be".)

A) It's final x-velocity is the same as its initial x-velocity because it is at constant velocity in the x-direction and $a_x = 0 \text{ m/s}^2$.