Make sure you wrote these on your equation chart: Vx $=V \cos \theta$ AND Vy $=V \sin \theta$ if all angles start from the $+x$ axis.

1. A. What is the magnitude of the vector at the right?

B. What is the direction of the vector at the right?
2. For all vectors we must r \qquad them into their x and y components.
3. For the following three vectors, give the angles starting from the $+x$ axis.

4. Resolve the following vectors into their x and y components (remember that components can also be zero, negative).

Use the vectors at the right to answer the following (hint: notice that some cancel).
5. Which vector or vectors...
i. \qquad -X and -Y components
k. \qquad has $-X$ and $Y=0$

1. have $+X$ components
m. \qquad而
n. \qquad direction $=180^{\circ}$
o. \qquad

p. \qquad direction $=-45^{\circ}$
q. \qquad $\mathrm{x}=\mathrm{y}$
s.
\qquad $=-\mathrm{C}$
t. \qquad direction $=0^{\circ}$

2. Mathematically add: $\mathrm{A}+\mathrm{D}+\mathrm{C}+\mathrm{B}+\mathrm{F}=$
3. Graphically do the following vector operations (draw these):
A) $E-F+2 D$
B) $2 \mathrm{~A}-2 \mathrm{D}-\mathrm{F}$

On the parallelogram at the right, R is the resultant (the resulting motion or your total displacement, start to finish). R starts at the bottom left and ends at the top right. Think of each of the arrows $(A-D)$ as possible directions.
8. Give three combinations of vectors that would correctly produce R.
(Hint: remember that vectors can be added in any order, can be subtracted, and can be moved.)

PreAP Two Dimensions 2

9. A) What is the x component?
B) What is y component?
C) Calculate the length of the hypotenuse.
D) Calculate the direction (θ). (Use trig)

Triangle 1

10. A person walks 15 m west, 10 m north, 25 m east, 6 m south, then another 8 m north.
A) $\mathrm{Xt}=$
B) $\mathrm{Yt}=$
C) Using Xt and Yt, draw the triangle:
D) Calculate the resultant's magnitude and direction.
11. If an object is going $4 \mathrm{~m} / \mathrm{s}$ for 10 seconds....
A) How far did the object move?
B) If the object was actually moving at 30° (from the x -axis), how fast was it moving in the x direction?
(Find the x-component of the object's velocity.)
C) In the 10 seconds it moved, how far did it move in the x-direction?
12. Now let's combine what we know, step-by-step...
A) Resolve vector 1 and 2 into their components. (Now you have only x 's and y's. YEA! And the rest of this problem is like \#9, above.)
B) Find Xtotal:
C) Find Ytotal:
D) With Xtotal and Ytotal, draw your resultant's triangle below and calculate the resultant's magnitude and direction

Now on your own, using the "Adding Vectors" notes:
13. Add these vectors together, being sure that all angles start at the +x axis and keeping track of negatives. 1. Add them graphically. 2. Resolve them into their components. 3. etc. (follow the notes)

