Due Thurs., Sept 24
Due Fri., Sept 25

2009 PreAP Two Dimensions 1

There are 3 pages to this homework, in addition to the "Trigonometry Basics" worksheet.
Let's ensure you know the Pythagorean theorem: $A^{2}+B^{2}=C^{2}$, where A and B are the two sides of a right triangle and C is the hypotenuse (long side). If $A=8 m$ and $B=17 \mathrm{~m}$, then:

$$
\begin{array}{lc}
8^{2}+17^{2}=\mathrm{C}^{2} & 353=\mathrm{C}^{2} \\
64+289=\mathrm{C}^{2} & \sqrt{353}=18.8 \mathrm{~m}=\mathrm{C}
\end{array}
$$

As always, show your work.

1. If $\mathrm{A}=4 \mathrm{~m}$ and $\mathrm{B}=12 \mathrm{~m}$, find C .

Don't outthink the following questions. Notice the compass directions at the right if you are confused.
2. Positive or Negative?
A. - Walking east?
B. _- Walking north?
C. - Walking south?
D. - Walking west?
3. Δx or Δy ?
A. - Walking east?
B. Walking north?
C. - Walking south?
D. -_ Walking west?

4. A person walks 4 m north, then 8 m south, then, totally confused, walks another 10 m north. Find their displacement. (If they started at the origin, where did they end up?) Write each individual displacement, keeping track of + and - , then solve.
5. Another confused person walks 15 m east, then 20 m west, then 2 m east. What is their displacement?
6. A third, VERY confused person walks 30 m west, then 10 m north, then 5 m south, then 40 m east, then another 6 m north.
A) Find Δx.
B) Find Δy.
C) Using the Pythagorean theorem, find their total displacement (use Δy and Δx as A and B [doesn't matter which], C is the total displacement).
7. (As you did before.) A FOURTH PHENOMENALLY confused person walks 50 m north, 12 m east, 60 m west, 10 m south, and another 5 m south. Find the person's total displacement.

Page 1 of 3

cstephenmurray.com

Let me explain the grid. The non-arrow black lines are the x and y axis. The arrow represent motion (vectors). Each vector starts at the origin $(0,0)$ and ends at the end of the arrow (the circle). (I assume you know which is the x and y axis and which directions are positive and negative.) To simplify things, let's make each square equal to only 1 meter. When I ask for Δx or $\Delta y I$ am asking for how far the object moves in the x direction and y direction from its start to its end. Since each arrow starts at the origin, the displacements are the x and y coordinates of the final position (since initial positions are 0,0). ALSO-Some displacements can be negative!!!!!
8. Which arrows have negative y coordinates?
9. Which arrows have negative x coordinates?
10. For Arrow B:
A) $\Delta x=$ \qquad ; $\Delta y=$ \qquad .
B) Using Δx and Δy as A and B, find the total displacement of Arrow B (find "C").
11. For Arrow A: (notice negatives)
A) $\Delta x=$ \qquad ; $\Delta y=$ \qquad .
B) Find the total displacement of Arrow A.

12. For Arrow C:
A) $\Delta x=$ \qquad ; $\Delta y=$ \qquad .
B) Find the total displacement of Arrow C.
13. Find the total displacement of Arrow D.

Page 2 of 3

Use your notes: "Trigonometry Basics" to answer the following.

14. On triangle 3, find the y component of 21 m (find y).
Variables: Equation: Solve: $\theta=$ opposite $=$ adjacent $=$ hypotenuse $=$
15. A. On triangle 4, find the y component of $64 \mathrm{~m} / \mathrm{s}$. Variables: Equation: Solve:
B. Now, find the x component of $64 \mathrm{~m} / \mathrm{s}$. Variables: Equation:

Solve:

Triangle 5
16. On triangle 5, calculate BOTH x and the hypotenuse.

