

Relative Motion Example

1. A toy car has a velocity of $3 \mathrm{~m} / \mathrm{s}$. It cross a 1.5 m wide conveyor belt that is moving $2 \mathrm{~m} / \mathrm{s}$.
A. How long does it take for the car to cross the walkway?
B. How far up has the car moved in this time?
C. Find the car's total displacement (magnitude and direction).
D. What is the car's total speed when it is on the conveyor belt?
E. If the car wanted to go straight across, what would its direction need to be?

2. A submarine on patrol comes across an underwater canyon that has a consistent current flowing thru it to the west.
A. If the sub enters the air stream directly perpendicular to the current, what is its velocity and direction relative to the ground?
B. If the canyon is 480 m wide, how long does it take the sub get across? (Hint: Is this an x or y-direction question? Then use only the information for that direction to solve.)
C. How far along the canyon (west) has the sub drifted by the time it has crossed? (Again: x or y question?)
D. At what direction must the sub have to aim to get directly across the canyon. (Directly across the canyon is Lazy's path.)

Name:

Relative Motion Example

1. A toy car has a velocity of $3 \mathrm{~m} / \mathrm{s}$. It cross a 1.5 m wide conveyor belt that is moving $2 \mathrm{~m} / \mathrm{s}$.
A. How long does it take for the car to cross the walkway?
$x: S=D / T \quad T=D / 5=1.5 / 3=0.5 \mathrm{sec}$
B. How far up has the car moved in this time?
$y: D=5 T=2(0,5)=1 \mathrm{~m}$
C. Find the car's total displacement (magnitude and direction).

$$
\begin{aligned}
1.5^{2}+1^{2} & =H^{2} \\
H & =1.8 \mathrm{~m}
\end{aligned}
$$

D. What is the car's total speed when it is on the conveyor belt?

$$
4+q=13 \quad \sqrt{13}=3.6 \mathrm{~m} / \mathrm{s}
$$

E. If the car wanted to go straight across, what would its direction need to be?

$$
\begin{aligned}
& \sin \theta=\frac{O}{H}=-\frac{2}{3} \\
& \theta=\sin ^{-1}\left(\frac{2}{-3}\right) \quad \theta=-41.8^{\circ}
\end{aligned}
$$

2. A submarine on patrol comes across an underwater canyon that has a consistent current flowing thru it to the west.
A. If the sub enters the air stream directly perpendicular to the current, what is its velocity and direction relative to the ground?

$$
7^{2}+10^{2}=H^{2} \quad H=12,-2 \mathrm{~m} / \mathrm{s}
$$

B. If the canyon is 480 m wide, how long does it take the sub get across? (Hint: Is this an x or y-direction question? Then use only the information for that direction to solve.)

$$
T=\frac{D}{5}=\frac{480}{10}=48 \mathrm{sec}
$$

C. How far along the canyon (west) has the sub drifted by the time it has crossed? (Again: x or y question?)

$$
D=5 T=7(48)=336 \mathrm{~m}
$$

D. At what direction must the sub have to aim to get directly across the canyon. (Directly across the canyon is Lazy's path.)

$$
\frac{7 \mathrm{~m} / \mathrm{s}}{\sqrt{4} / 10 \mathrm{~m} / \mathrm{s}}
$$

$$
\theta=\sin ^{-1}\left(\frac{7}{10}\right)=44.4^{\circ}
$$

