Projectile Motion Walk Thru—Ground to Ground

Background: An object launched into the air is a projectile. You should know that it comes down due to gravity, so its acceleration in the y-direction (its vertical acceleration) is -9.8 m/s^2 . You should also know that the acceleration in the x-direction = 0 m/s^2 .

Ex 1: A projectile is launched at 35° going 50 m/s. It is launched from the ground and lands back on the ground. Calculate the time in the air and how far away it lands (known as its "range").

Projectile Motion Walk Thru—Horizontal Launch

Ex 2: A projectile is launched horizontally from 3 m up with an initial velocity of 5 m/s. Calculate its range (how far away it lands).

Step 1: Since the acceleration is only vertical, you have to work in the vertical and horizontal directions independently, so calculate Vxi (initial x -velocity) and Vyi (initial y-velocity).

The x-velocity can always be calculated with cosine and the y-velocity with sine. A horizontally launched projectile has an angle of 0°, so: $Vy = 5sin0^\circ = 0 m/s$ $Vx = 5\cos^{\circ} = 5 \text{ m/s}$

Vx and Vy should also be obvious, since it is launched horizontally. It has no initial y-velocity, so Vyi = 0 m/s.

V = 5 m/s

Step 2: Write down everything you know (all the variables) in both directions (x and y).

 $a_v = -9.8 \text{ m/s}^2$ (freefall) $Vi = Vsin\theta = 0$ m/s (see step 1) Vf = $\Delta y = -3 \text{ m} (it drops 3 m)$ $t_{y} = ___$

<u>y-direction:</u>

x-direction:

 $a_x = 0 \text{ m/s}^2$ (gravity is vertical only) So, S = D/T and D = ST $Vi = V\cos\theta = 5 \text{ m/s} (see step 1)$ Vf = Vi = 5 m/s (since a = 0) $\Delta x =$ $t_x = t_y = _$

 $a_x = 0 \text{ m/s}^2$ (gravity is vertical only)

 $Vi = V\cos\theta = 5 m/s (see step 1)$ Vf = Vi = 5 m/s (since a = 0)

x-direction:

So, S = D/T and D = ST

 $\bigtriangleup x = D = ST$

 $t_x = t_y = _$

Step 3: From what you are given (your variables) solve for what you can.

We could solve for Vf and t, but we don't need Vf. We do need time for the x-direction, though.

$\Delta y = \frac{1}{2} (v_i + v_f) t$	
$v_f = v_i + a t$	
$\Delta y = v_{i}t + \frac{1}{2}a(t)^{2}$	
$\Delta y = v_{f} t - \frac{1}{2} a(t)^{2}$	
$v_{f}^{2} = v_{i}^{2} + 2 a \Delta y$	

y-direction:

Again, many of you calculate Vf because you think you have to. You don't. The third equation doesn't use Vf, so let's try that one.

$$a_{y} = -9.8 \text{ m/s}^{2} (freefall)$$

Vi = Vsin θ = 0 m/s (see step 1)
Vf = $\Delta y = -3 \text{ m} (it \, drops \, 3 \, m)$
t_y = $-3 \text{ m} (it \, drops \, 3 \, m)$

 $\Delta y = v_i t + \frac{1}{2} a(t)^2$ -3 = 0(-3 =-3 $t^2 = -3$

If we had time, we could solve for Δx . So go to the y-direction.

$$-3 = 0(t) + \frac{1}{2}(-9.8)t^{2} \quad \text{o times } t = 0$$

$$-3 = \frac{1}{2}(-9.8)t^{2} \quad \text{Only } t \text{ is squared}$$

$$-3 = -4.9t^{2}$$

$$t^{2} = -3/-4.9 = 0.612 \quad \text{Don't forget to take}$$

$$t = \sqrt{0.612} = 0.78 \text{ sec}$$

$$t^{2} = -3/2 + \frac{1}{2} = 0.78 \text{ sec}$$

Step 4: Now that you know ty, put it into your y-direction variables AND, since tx and ty are the same (it stops moving horizontally when it stops vertically), put it into the x-direction, too. Solve for x, now that you have time.

y-direction:

 $a_v = -9.8 \text{ m/s}^2$ (freefall) $Vi = Vsin\theta = 0$ m/s (see step 1) Vf = $\Delta y = -3 \text{ m} (it drops 3 m)$ $t_v = 0.78 \text{ sec}$

Now we can solve for Δx

 $\Delta x = v_x t = 5(0.78)$ $\Delta x = 3.91 \text{ m}$

x-direction:

 $a_x = 0 \text{ m/s}^2$ (gravity is vertical only) So, S = D/T and D = ST $Vi = V\cos\theta = 5 m/s$ (see step 1) Vf = Vi = 5 m/s (since a = 0) $\Delta x = D = ST$ $t_x = t_y = 0.78 \text{ sec}$

And we never needed V_f in the y-direction.

Copyright © 2012, C. Stephen Murray

Projectile Motion Walk Thru—How High?

Ex 3: A projectile is launched 20 m/s at 65°. How high does it go?

Step 2: Write down everything you know (all the variables) in both directions (x and y).

Step 1: Since the acceleration is only vertical, you have to work in the vertical and horizontal directions independently. And since "How High?" is a vertical question, Vx is irrelevant, so just calculate Vyi.

y-direction:

 $a_{y} = -9.8 \text{ m/s}^{2} (freefall)$ Vi = Vsin θ = 18.1 m/s (see step 1) Vf = 0 m/s (at the top) $\Delta y = _____(what we need)$ t_y = _____(don't need) <u>x-direction:</u>

Irrelevant, since "How High" is a vertical question only.

Step 3: From what you are given (your variables) solve for what you can.

We could solve for t, but we don't need it. We only need Δy .

$$\Delta y = \frac{1}{2} (v_i + v_f) t$$

$$v_f = v_i + a t$$

$$\Delta y = v_i t + \frac{1}{2} a (t)^2$$

$$\Delta y = v_f t - \frac{1}{2} a (t)^2$$

$$v_f^2 = v_i^2 + 2 a \Delta y$$

Extension: Now that you have the highest point, you could find the time and then the x-direction position of the top of the arch. You will need t, though, first.

ı _y =}	-9.8 m/s ² (freefall)
Vi =	$V\sin\theta = 18.1 \text{ m/s} (see step 1)$
Vf =	0 m/s (at the top)
Δy =	(what we need)
; _y = /	(don't need)

y-direction:

Notice that the last equation does not have t in it AND it has all of our other variables.

$$v_{f}^{2} = v_{i}^{2} + 2a\Delta y$$

$$0 = (18.1)^{2} + 2(-9.8)\Delta y$$

$$0 = 327.61 - 19.6\Delta y \qquad Don't \ subtract. \ -19.6$$

$$-327.61 = -19.6\Delta y \qquad is \ multiplied \ to \ \Delta y$$

$$\Delta y = -327.61/-19.6$$

$$\Delta y = 16.7m$$

y-direction:

 $\begin{array}{l} a_y = -9.8 \text{ m/s}^2 (freefall) \\ \text{Vi} = \text{Vsin}\theta = 18.1 \text{ m/s} (see step 1) \\ \text{Vf} = 0 \text{ m/s} (at the top) \\ \Delta y = 16.7 \text{ m} (from step 3) \\ t_y = ___ (now needed for \Delta x) \end{array}$

Vf = Vi + at

0 = 18.1 + -9.8 t-18.1 = -9.8t t = 1.8 sec

<u>**x-direction:**</u> m/s^2 (arayity)

 $a_x = 0 \text{ m/s}^2 (gravity is vertical only)$ So, S = D/T and D = ST Vi = Vcos θ = 20cos 65° = 8.45 m/s (see step 1) Vf = Vi = 5 m/s (since a = 0) Δx = D = ST t_x = t_y = **1.8 sec**

Now we can solve for Δx

 $\Delta x = v_x t = 8.45(1.8)$ $\Delta x = 15.2 \text{ m}$

So the top point of this projectile 16.7 m up and 15.2 m from the starting point.