Projectile Motion Walk Thru—Ground to Ground

Background: An object launched into the air is a projectile. You should know that it comes down due to gravity, so its acceleration in the y-direction (its vertical acceleration) is $-9.8 \mathrm{~m} / \mathrm{s}^{2}$. You should also know that the acceleration in the x -direction $=0 \mathrm{~m} / \mathrm{s}^{2}$.

Ex 1: A projectile is launched at 35° going $50 \mathrm{~m} / \mathrm{s}$. It is launched from the ground and lands back on the ground. Calculate the time in the air and how far away it lands (known as its "range").

Step 1: Since the acceleration is only vertical, you have to work in the vertical and horizontal directions independently, so calculate Vxi (initial x-velocity) and Vyi (initial y-velocity).

$\mathrm{V}_{\mathrm{Y}}=$ $\mathrm{V}(\sin \theta)=$ $28.7 \mathrm{~m} / \mathrm{s}$

Step 2: Write down everything you know (all the variables) in both directions (x and y).

$$
\begin{aligned}
& \text { y-direction: } \\
& \mathrm{a}_{\mathrm{y}}=-9.8 \mathrm{~m} / \mathrm{s}^{2}(\text { freefall }) \\
& \mathrm{Vi}=\mathrm{V} \sin \theta=28.7 \mathrm{~m} / \mathrm{s}(\text { see step } 1) \\
& \mathrm{Vf}=-\mathrm{Vi}=-28.7 \mathrm{~m} / \mathrm{s} \text { (if gnd to gnd }) \\
& \Delta \mathrm{y}=0 \mathrm{~m}(\text { if gnd to } \text { gnd }) \\
& \mathrm{t}_{\mathrm{y}}=
\end{aligned}
$$

x-direction:

$\mathrm{a}_{\mathrm{x}}=0 \mathrm{~m} / \mathrm{s}^{2}$ (gravity is vertical only)
So, $S=D / T$
$\mathrm{Vi}=\mathrm{V} \cos \theta=41 \mathrm{~m} / \mathrm{s}$ (see step 1)
$\mathrm{Vf}=\mathrm{Vi}=41 \mathrm{~m} / \mathrm{s}($ since $a=0)$
$\Delta \mathrm{x}=$
$\mathrm{t}_{\mathrm{x}}=\mathrm{t}_{\mathrm{y}}=$ \qquad
Step 3: From what you are given
(your variables) solve for what you
can.
We have all of the y variables,
so we can solve for time.

$$
\begin{gathered}
\Delta y=\frac{1}{2}\left(v_{i}+v_{f}\right) t \\
v_{f}=v_{i}+a t
\end{gathered}
$$

$\Delta y=v_{i} t+\frac{1}{2} a(t)^{2}$
$\Delta y=v_{f} t-\frac{1}{2} a(t)^{2}$ $v_{f}{ }^{2}=v_{i}{ }^{2}+2 a \Delta y$

$$
v_{f}=v_{i}+2 a \Delta y
$$

-

Since we have all of the y direction variables, we can use any of the equations (except the last one, since it doesn't have " "t" in it). Don't choose the t^{2} ones, since you would need the quadratic equation. If you use the 1 st one v_{i} and v_{f} cancel. So use the 2 nd one.

$$
\begin{gathered}
\mathrm{Vf}=\mathrm{Vi}+\mathrm{at} \\
-28.7=28.7+-9.8 \mathrm{t} \\
-57.4=-9.8 \mathrm{t} \\
\mathbf{t}=\mathbf{5 . 8} \mathbf{~ s e c}
\end{gathered}
$$

Step 4: Now that you know ty, put it into your y-direction variables AND, since tx and ty are the same (it stops moving horizontally when it stops vertically), put it into the x -direction, too. Solve for x, now that you have time.

$$
\begin{aligned}
& \quad \text { y-direction: } \\
& \mathrm{a}_{\mathrm{y}}=-9.8 \mathrm{~m} / \mathrm{s}^{2}(\text { freefall }) \\
& \mathrm{V} \mathrm{yi}=\mathrm{V} \sin \theta=28.7 \mathrm{~m} / \mathrm{s}(\text { see step } 1) \\
& \mathrm{Vyf}=-\mathrm{Vyi}=-28.7 \mathrm{~m} / \mathrm{s}(\text { if gnd to } \text { gnd }) \\
& \Delta \mathrm{y}=0 \mathrm{~m}(\text { if gnd to } \text { gnd }) \\
& \mathrm{t}_{\mathrm{y}}=\underline{\mathbf{5 . 8} \mathbf{~ s e c}}
\end{aligned}
$$

x-direction:

$\mathrm{a}_{\mathrm{x}}=0 \mathrm{~m} / \mathrm{s}^{2}$ (gravity is vertical only) So, $\mathrm{S}=\mathrm{D} / \mathrm{T}$ or $\mathrm{Vx}=\Delta \mathrm{x} / \mathrm{t}($ since $a=0)$ $\mathrm{Vxi}=\mathrm{V} \cos \theta=28.7 \mathrm{~m} / \mathrm{s}$ (see step 1) $\mathrm{Vxf}=\mathrm{Vxi}=41 \mathrm{~m} / \mathrm{s}($ since $a=0)$ $\xrightarrow[\mathrm{t}_{\mathrm{x}}=\mathrm{t}_{\mathrm{y}}=]{\Delta \mathrm{x}=\mathrm{D}=\mathrm{ST}=\mathrm{v}_{\mathrm{x}} \mathrm{t}=}$

Can't solve for Δx or time.
Need 1 more variable.

Projectile Motion Walk Thru—Horizontal Launch

Ex 2: A projectile is launched horizontally from 3 m up with an initial velocity of $5 \mathrm{~m} / \mathrm{s}$. Calculate its range (how far away it lands).

Step 1: Since the acceleration is only vertical, you have to work in the vertical and horizontal directions independently, so calculate Vxi (initial x -velocity) and Vyi (initial y-velocity).

The x-velocity can always be calculated with cosine and the y-velocity with sine. A horizontally launched projectile has an angle of 0°, so:

$$
\begin{aligned}
& \mathrm{Vy}=5 \sin 0^{\circ}=0 \mathrm{~m} / \mathrm{s} \\
& \mathrm{Vx}=5 \cos 0^{\circ}=5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Vx and Vy should also be obvious, since it is launched horizontally. It has no

$$
\xrightarrow{\mathrm{V}=5 \mathrm{~m} / \mathrm{s}}
$$

Step 2: Write down everything you know (all the variables) in both directions (x and y).

$$
\begin{aligned}
& \quad \text { y-direction: } \\
& \mathrm{a}_{\mathrm{y}}=-9.8 \mathrm{~m} / \mathrm{s}^{2}(\text { freefall }) \\
& \mathrm{Vi}=\mathrm{V} \sin \theta=0 \mathrm{~m} / \mathrm{s}(\text { see step } 1) \\
& \mathrm{Vf} \\
& \Delta=- \\
& \Delta \mathrm{y}=-3 \mathrm{~m}(\text { it drops } 3 \mathrm{~m}) \\
& \mathrm{t}_{\mathrm{y}}=
\end{aligned}
$$

x-direction:

$\mathrm{a}_{\mathrm{x}}=0 \mathrm{~m} / \mathrm{s}^{2}$ (gravity is vertical only)
So, $\mathrm{S}=\mathrm{D} / \mathrm{T}$ and $\mathrm{D}=\mathrm{ST}$
$\mathrm{Vi}=\mathrm{V} \cos \theta=5 \mathrm{~m} / \mathrm{s}$ (see step 1)
$\mathrm{Vf}=\mathrm{Vi}=5 \mathrm{~m} / \mathrm{s}($ since $a=0)$
$\Delta \mathrm{x}=$ \qquad
$\mathrm{t}_{\mathrm{x}}=\mathrm{t}_{\mathrm{y}}=$ \qquad

Step 3: From what you are given (your variables) solve for what you can.

We could solve for Vf and t , but we don't need Vf. We do need time for the x -direction, though.

x-direction:

$\mathrm{a}_{\mathrm{x}}=0 \mathrm{~m} / \mathrm{s}^{2}$ (gravity is vertical only)
So, $\mathrm{S}=\mathrm{D} / \mathrm{T}$ and $\mathrm{D}=\mathrm{ST}$
$\mathrm{Vi}=\mathrm{V} \cos \theta=5 \mathrm{~m} / \mathrm{s}$ (see step 1)
$\mathrm{Vf}=\mathrm{Vi}=5 \mathrm{~m} / \mathrm{s}($ since $a=0)$
$\Delta x=D=S T$
$t_{x}=t_{y}=$
\qquad
If we had time, we could solve

$$
\begin{gathered}
\Delta y=\frac{1}{2}\left(v_{i}+v_{f}\right) t \\
v_{f}=v_{i}+a t \\
\Delta y=v_{i} t+\frac{1}{2} a(t)^{2} \\
\Delta y=v_{f} t-\frac{1}{2} a(t)^{2} \\
v_{f}^{2}=v_{i}^{2}+2 a \Delta y
\end{gathered}
$$

Again, many of you calculate Vf because you think you have to. You don't. The third equation doesn't use Vf, so let's try that one. for Δx. So go to the y-direction.

$$
\begin{array}{cl}
\Delta y=v_{i} t+\frac{1}{2} a(t)^{2} & \text { for } \Delta \mathrm{x} . \text { So go to } \mathrm{t} \\
-3=0(t)+\frac{1}{2}(-9.8) t^{2} \longleftarrow & \text { times } t=0 \\
-3=\frac{1}{2}(-9.8) t^{2} \longleftarrow \text { Only } t \text { is squared } \\
-3=-4.9 t^{2} & \text { Don't forget to take } \\
t^{2}=-3 /-4.9=0.612 \longleftarrow & \text { the square root. }
\end{array}
$$

Step 4: Now that you know ty, put it into your y -direction variables AND, since tx and ty are the same (it stops moving horizontally when it stops vertically), put it into the x-direction, too. Solve for x , now that you have time.

y-direction:

$\mathrm{a}_{\mathrm{y}}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ (freefall)
$\mathrm{Vi}=\mathrm{V} \sin \theta=0 \mathrm{~m} / \mathrm{s}($ see step 1$)$
Vf $=$ \qquad
$\Delta \mathrm{y}=-3 \mathrm{~m}$ (it drops 3 m)
$\mathrm{t}_{\mathrm{y}}=\mathbf{0 . 7 8} \mathbf{~ s e c}$

$$
\begin{array}{c}\text { x-direction: } \\ \mathrm{a}_{\mathrm{x}}=0 \mathrm{~m} / \mathrm{s}^{2}(\text { gravity is vertical only }) \\ \mathrm{So}, \mathrm{S}=\mathrm{D} / \mathrm{T} \text { and } \mathrm{D}=\mathrm{ST} \\ \mathrm{Vi}=\mathrm{V} \cos \theta=5 \mathrm{~m} / \mathrm{s}(\text { see step } 1) \\ \mathrm{Vf}=\mathrm{Vi}=5 \mathrm{~m} / \mathrm{s}(\text { since } a=0) \\ \Delta \mathrm{x}=\mathrm{D}=\mathrm{ST}\end{array}
$$

$\mathrm{t}_{\mathrm{x}}=\mathrm{t}_{\mathrm{y}}=\underline{\mathbf{0 . 7 8 ~ s e c}}$ And we never needed V_{f} in the y-direction.

$$
\begin{array}{c}\text { x-direction: } \\ \mathrm{a}_{\mathrm{x}}=0 \mathrm{~m} / \mathrm{s}^{2}(\text { gravity is vertical only }) \\ \mathrm{So}, \mathrm{S}=\mathrm{D} / \mathrm{T} \text { and } \mathrm{D}=\mathrm{ST} \\ \mathrm{Vi}=\mathrm{V} \cos \theta=5 \mathrm{~m} / \mathrm{s}(\text { see step } 1) \\ \mathrm{Vf}=\mathrm{Vi}=5 \mathrm{~m} / \mathrm{s}(\text { since } a=0) \\ \Delta \mathrm{x}=\mathrm{D}=\mathrm{ST}\end{array}
$$

$\mathrm{t}_{\mathrm{x}}=\mathrm{t}_{\mathrm{y}}=\underline{\mathbf{0 . 7 8 ~ s e c}}$ And we never needed V_{f} in the y-direction.

$$
\begin{array}{c}\text { x-direction: } \\ \mathrm{a}_{\mathrm{x}}=0 \mathrm{~m} / \mathrm{s}^{2}(\text { gravity is vertical only }) \\ \mathrm{So}, \mathrm{S}=\mathrm{D} / \mathrm{T} \text { and } \mathrm{D}=\mathrm{ST} \\ \mathrm{Vi}=\mathrm{V} \cos \theta=5 \mathrm{~m} / \mathrm{s}(\text { see step } 1) \\ \mathrm{Vf}=\mathrm{Vi}=5 \mathrm{~m} / \mathrm{s}(\text { since } a=0) \\ \Delta \mathrm{x}=\mathrm{D}=\mathrm{ST}\end{array}
$$

$\mathrm{t}_{\mathrm{x}}=\mathrm{t}_{\mathrm{y}}=\underline{\mathbf{0 . 7 8 ~ s e c}}$ And we never needed V_{f} in the y-direction.

$$
\begin{array}{c}\text { x-direction: } \\ \mathrm{a}_{\mathrm{x}}=0 \mathrm{~m} / \mathrm{s}^{2}(\text { gravity is vertical only }) \\ \mathrm{So}, \mathrm{S}=\mathrm{D} / \mathrm{T} \text { and } \mathrm{D}=\mathrm{ST} \\ \mathrm{Vi}=\mathrm{V} \cos \theta=5 \mathrm{~m} / \mathrm{s}(\text { see step } 1) \\ \mathrm{Vf}=\mathrm{Vi}=5 \mathrm{~m} / \mathrm{s}(\text { since } a=0) \\ \Delta \mathrm{x}=\mathrm{D}=\mathrm{ST}\end{array}
$$

$\mathrm{t}_{\mathrm{x}}=\mathrm{t}_{\mathrm{y}}=\underline{\mathbf{0 . 7 8 ~ s e c}}$ And we never needed V_{f} in the y-direction.

$$
\begin{array}{c}\text { x-direction: } \\ \mathrm{a}_{\mathrm{x}}=0 \mathrm{~m} / \mathrm{s}^{2}(\text { gravity is vertical only }) \\ \mathrm{So}, \mathrm{S}=\mathrm{D} / \mathrm{T} \text { and } \mathrm{D}=\mathrm{ST} \\ \mathrm{Vi}=\mathrm{V} \cos \theta=5 \mathrm{~m} / \mathrm{s}(\text { see step } 1) \\ \mathrm{Vf}=\mathrm{Vi}=5 \mathrm{~m} / \mathrm{s}(\text { since } a=0) \\ \Delta \mathrm{x}=\mathrm{D}=\mathrm{ST}\end{array}
$$

$\mathrm{t}_{\mathrm{x}}=\mathrm{t}_{\mathrm{y}}=\underline{\mathbf{0 . 7 8 ~ s e c}}$ And we never needed V_{f} in the y-direction.

$$
\begin{array}{c}\text { x-direction: } \\ \mathrm{a}_{\mathrm{x}}=0 \mathrm{~m} / \mathrm{s}^{2}(\text { gravity is vertical only }) \\ \mathrm{So}, \mathrm{S}=\mathrm{D} / \mathrm{T} \text { and } \mathrm{D}=\mathrm{ST} \\ \mathrm{Vi}=\mathrm{V} \cos \theta=5 \mathrm{~m} / \mathrm{s}(\text { see step } 1) \\ \mathrm{Vf}=\mathrm{Vi}=5 \mathrm{~m} / \mathrm{s}(\text { since } a=0) \\ \Delta \mathrm{x}=\mathrm{D}=\mathrm{ST}\end{array}
$$

$\mathrm{t}_{\mathrm{x}}=\mathrm{t}_{\mathrm{y}}=\underline{\mathbf{0 . 7 8 ~ s e c}}$ And we never needed V_{f} in the y-direction.

$$
\begin{array}{c}\text { x-direction: } \\ \mathrm{a}_{\mathrm{x}}=0 \mathrm{~m} / \mathrm{s}^{2}(\text { gravity is vertical only }) \\ \mathrm{So}, \mathrm{S}=\mathrm{D} / \mathrm{T} \text { and } \mathrm{D}=\mathrm{ST} \\ \mathrm{Vi}=\mathrm{V} \cos \theta=5 \mathrm{~m} / \mathrm{s}(\text { see step } 1) \\ \mathrm{Vf}=\mathrm{Vi}=5 \mathrm{~m} / \mathrm{s}(\text { since } a=0) \\ \Delta \mathrm{x}=\mathrm{D}=\mathrm{ST}\end{array}
$$

$\mathrm{t}_{\mathrm{x}}=\mathrm{t}_{\mathrm{y}}=\underline{\mathbf{0 . 7 8 ~ s e c}}$ And we never needed V_{f} in the y-direction.

Now we can solve for Δx
$\underline{\boldsymbol{\Delta}}=\mathbf{3 . 9 1} \mathbf{m} \quad$ And we never needed V_{f} in the y-direction.

Projectile Motion Walk Thru—How High?

Ex 3: A projectile is launched $20 \mathrm{~m} / \mathrm{s}$ at 65°. How high does it go?

Step 1: Since the acceleration is only vertical, you have to work in the vertical and horizontal directions independently. And since "How High?" is a vertical question, $V x$ is irrelevant, so just calculate Vyi.

Step 2: Write down everything you know (all the variables) in both directions (x and y).
\quad y-direction:
$\mathrm{a}_{\mathrm{y}}=-9.8 \mathrm{~m} / \mathrm{s}^{2}($ freefall $)$
$\mathrm{Vi}=\mathrm{V} \sin \theta=18.1 \mathrm{~m} / \mathrm{s}$ (see step 1)
$\mathrm{Vf}=0 \mathrm{~m} / \mathrm{s}($ at the top $)$
$\Delta \mathrm{y}=\square$ (what we need)
$\mathrm{t}_{\mathrm{y}}=\square$ (don't need)

x-direction:

Irrelevant, since "How High" is a vertical question only.

Step 3: From what you are given (your variables) solve for what you can.

We could solve for t, but we don't need it. We only need Δy.

$$
\begin{gathered}
\Delta y=\frac{1}{2}\left(v_{i}+v_{f}\right) t \\
v_{f}=v_{i}+a t \\
\Delta y=v_{i} t+\frac{1}{2} a(t)^{2} \\
\Delta y=v_{f} t-\frac{1}{2} a(t)^{2} \\
v_{f}^{2}=v_{i}^{2}+2 a \Delta y
\end{gathered}
$$

$$
\begin{aligned}
& v_{f}^{2}=v_{i}^{2}+2 a \Delta y \\
& 0=(18.1)^{2}+2(-9.8) \Delta y \\
& 0=327.61-19.6 \Delta y \longleftarrow \\
&- 327.61=-19.6 \Delta y \quad \text { Don't subtract. }-19.6 \\
& \text { is multiplied to } \Delta y
\end{aligned}
$$

Notice that the last equation does not have t in it AND it has all of our other variables.

$$
\Delta y=-327.61 /-19.6
$$

$$
\Delta y=16.7 m
$$

Extension: Now that you have the highest point, you could find the time and then the x-direction position of the top of the arch. You will need t, though, first.

$$
\begin{aligned}
& \mathbf{y} \text {-direction: } \\
& \mathrm{a}_{\mathrm{y}}=-9.8 \mathrm{~m} / \mathrm{s}^{2} \text { (freefall) } \\
& \mathrm{Vi}=\mathrm{V} \sin \theta=18.1 \mathrm{~m} / \mathrm{s}(\text { see step } 1) \\
& \mathrm{Vf}=0 \mathrm{~m} / \mathrm{s} \text { (at the top) } \\
& \Delta \mathrm{y}=16.7 \mathrm{~m} \text { (from step 3) } \\
& \mathrm{t}_{\mathrm{y}}=\ldots \text { (now needed for } \Delta x \text {) } \\
& \mathrm{a}_{\mathrm{x}}=0 \mathrm{~m} / \mathrm{s}^{2} \text { (gravity is vertical only) } \\
& \text { So, } S=D / T \text { and } D=S T \\
& \mathrm{Vi}=\mathrm{V} \cos \theta=20 \cos 65^{\circ}=8.45 \mathrm{~m} / \mathrm{s}(\text { see step } 1) \\
& \mathrm{Vf}=\mathrm{Vi}=5 \mathrm{~m} / \mathrm{s}(\text { since } a=0) \\
& \Delta \mathrm{x}=\mathrm{D}=\mathrm{ST} \\
& \mathrm{t}_{\mathrm{x}}=\mathrm{t}_{\mathrm{y}}=\underline{\mathbf{1 . 8} \mathrm{sec}} \\
& \text { Now we can solve for } \Delta x \\
& \Delta \mathrm{x}=\mathrm{v}_{\mathrm{x}} \mathrm{t}=8.45(1.8) \\
& \Delta x=15.2 \mathrm{~m}
\end{aligned}
$$

So the top point of this projectile 16.7 m up and 15.2 m from the starting point.

