Drawing Projectile Motion Graphs

A projectile is shot from the ground and lands on the ground. Its initial velocity is 26 m/s at 49°.

- 1. Calculate the initial x and y velocities:
- 2. Calculate the time the object is in the air:

- 3. Calculate the range (final x position):
- 4. Fill in the data tables at the right, doing whatever additional calculations that are necessary.

x-direction						
t (sec)	0	t/4	t/2	3t/4	t	
a (m/s ²)						
x (m)						
v (m/s)						

5. Transfer your table information to the duplicate tables on the back.

cstephenmurray.com

Copyright © 2011, C. Stephen Murray

Drawing Projectile Motion Graphs

A projectile is shot from the ground and lands on the ground. Its initial velocity is 26 m/s at 49°.

- 1. Calculate the initial x and y velocities:
- 2. Calculate the time the object is in the air:
- 3. Calculate the range (final x position):
- 4. Fill in the data tables at the right, doing whatever additional calculations that are necessary.

y-direction						
t (sec)	0	t/4	t/2	3t/4	t	
a (m/s ²)						
y (m)						
v (m/s)						

x-direction						
t (sec)	0	t/4	t/2	3t/4	t	
a (m/s ²)						
x (m)						
v (m/s)						

5. Transfer your table information to the duplicate tables on the back.

y-direction						
t (sec)	0	t/4	t/2	3t/4	t	
a (m/s ²)						
y (m)						
v (m/s)						

x-direction						
t (sec)	0	t/4	t/2	3t/4	t	
a (m/s ²)						
x (m)						
v (m/s)						

6. Use your data tables to draw the following graphs.

cstephen murray.com

Copyright © 2011, C. Stephen Murray

	y-direction							
t (sec)	0	t/4	t/2	3t/4	t			
a (m/s ²)								
y (m)								
v (m/s)								

x-direction						
t (sec)	0	t/4	t/2	3t/4	t	
a (m/s ²)						
x (m)						
v (m/s)						

6. Use your data tables to draw the following graphs.

Drawing Projectile Motion Graphs

A projectile is shot from the ground and lands on the ground. Its initial velocity is 26 m/s at 49°.

1. Calculate the initial x and y velocities:

V_y =
$$26sin 49° = 19.6 m/s$$
 $V_X = 26cos 49° = 17.1 m/s$

Calculate the time the object is in the air:

$$V_F = V_1 + 2^{\frac{1}{2}}$$

 $-19.6 = 19.6 - 9.8^{\frac{1}{2}}$
 $-39.2 = -9.8^{\frac{1}{2}}$

3. Calculate the range (final x position):

4. Fill in the data tables at the right, doing whatever additional at Isec: calculations that are necessary.

$$V_{F}^{2} = V_{1}^{2} + 72 \Delta y \quad (2t \text{ top})$$

$$O = 19.6^{2} + 2(49.8) \Delta y$$

$$O = 384.16 - 19.6 \Delta y$$

$$-384.16 = -19.6 \Delta y$$

$$\Delta y = 14.7m$$

$$V_{F} = V_{1}^{2} + 2 \Delta y$$

$$= 9.8$$

$$\Delta y = V(t + \frac{1}{2}) + \frac{1}{2}$$

$$\Delta y = 19.6(1) - 4.9(1^{2})$$

$$\Delta y = 14.7m$$

$$V = 18ec$$

$$V = 19.6$$

y-direction

t/2

19.6

3t/4

14.7

t

0

-19.6

 \geq

t/4

14,7m

9.8%

0

-9

0

19.6

t

a 1/52

y Con

5. Transfer your table information to the duplicate tables on the back.

cstephenmurray.com

Copyright © 2011, C. Stephen Murray

y-direction

19.6

3t/4

14.7

t.

0

-19.6

 \geq

t/4

14.7m

9.8%

0

-9

0

19.6

t.

a 1/52

y Cons

Drawing Projectile Motion Graphs

A projectile is shot from the ground and lands on the ground. Its initial velocity is 26 m/s at 49°.

1. Calculate the initial x and y velocities:
$$\bigvee_{y} = 26 \sin 49^{\circ} = 19.6 \, \text{m/s} \quad \bigvee_{x} = 26 \cos 49^{\circ} = 17.1 \, \text{m/s}$$

Calculate the time the object is in the air:

$$V_{F} = V_{1} + 2^{+}$$

 $-19.6 = 19.6 - 9.84$ $t = 4sec$
 $-39.2 = -9.84$

3. Calculate the range (final x position):

4. Fill in the data tables at the right, doing whatever additional calculations that are necessary.

$$V_F = V_1^2 + 7 \Rightarrow \Delta y \quad (\Rightarrow t \Rightarrow p)$$

$$O = 19.6^2 + 2(48)^{\Delta}y$$

$$O = 384.16 - 19.6^{\Delta}y$$

$$-384.16 = -19.6^{\Delta}y$$

$$\Delta y = 19.6^{\Delta}y$$

$$V_F = V_1 + \Rightarrow t = 19.6$$

$$V_F = V_1 + \Rightarrow t = 19.6$$

at
$$|sec|$$
:
 $\Delta y = V:t + \frac{1}{2}at^{2}$
 $\Delta y = |9.6(1) - 4.9(1^{2})$
 $\Delta y = |4.7m$
Vat $|sec|$:

$$V_{F} = V_{1} + 2t = 19.6 - 9.8(1)$$

$$= 9.8 m/s$$

$$\Rightarrow t \ 3sec'$$

$$\Delta y = 19.6(3) - 4.9(3^{2}) \ V_{F} = V_{1} + 2t$$

$$\Delta y = 14.7 m \ V_{F} = 19.6 - 9.8(3)$$

5. Transfer your table information to the duplicate tables on the back.

y-direction							
t	0	t/4	t/2	3t/4	t		
a n/s²	-9				>		
y (M)	0	14.7m	19.6	14.7	0		
V m/c	19.6	9.84%	0	-9.8	-19.6		

70	x-direction						
t	0	t/4	t/2	3t/4	t		
a	0				\rightarrow		
X(n)	0	17.1	34,2	513	68,4		
v	17,1	ستر.			>		

6. Use your data tables to draw the following graphs.

Copyright © 2011, C. Stephen Murray

y-direction						
t	0	t/4	t/2	3t/4	t	
a n/sz	-9				⇒	
y ch	0	14,7m	19.6	14.7	0	
V m/s	19.6	9.84/5	0	-9.8	-19.6	

	x-direction						
t	0	t/4	t/2	3t/4	t		
a	0				\rightarrow		
X(n)	0	17.1	34,2	51.3	68,4		
v	17,1				7		

6. Use your data tables to draw the following graphs.

cstephenmurray.com

Copyright © 2011, C. Stephen Murray