Drawing Projectile Motion Graphs

A projectile is shot from the ground and lands on the ground. Its initial velocity is $26 \mathrm{~m} / \mathrm{s}$ at 49°.

1. Calculate the initial x and y velocities:
2. Calculate the time the object is in the air:
3. Calculate the range (final x position):

y-direction						
$t(\mathrm{sec})$	0	$\mathrm{t} / 4$	$\mathrm{t} / 2$	$3 \mathrm{t} / 4$	t	
$\mathrm{a}\left(\mathrm{m} / \mathrm{s}^{2}\right)$						
$\mathrm{y}(\mathrm{m})$						
$v(\mathrm{~m} / \mathrm{s})$						

4. Fill in the data tables at the right, doing whatever additional calculations that are necessary.

x-direction						
$t(\mathrm{sec})$	0	$\mathrm{t} / 4$	$\mathrm{t} / 2$	$3 \mathrm{t} / 4$	t	
$\mathrm{a}\left(\mathrm{m} / \mathrm{s}^{2}\right)$						
$\mathrm{x}(\mathrm{m})$						
$v(\mathrm{~m} / \mathrm{s})$						

5. Transfer your table information to the duplicate tables on the back.
cstephenmurray.com
Copyright © 2011, C. Stephen Murray

Drawing Projectile Motion Graphs

A projectile is shot from the ground and lands on the ground. Its initial velocity is $26 \mathrm{~m} / \mathrm{s}$ at 49°.

1. Calculate the initial x and y velocities:
2. Calculate the time the object is in the air:
3. Calculate the range (final x position):

y-direction						
$t(\mathrm{sec})$	0	$\mathrm{t} / 4$	$\mathrm{t} / 2$	$3 \mathrm{t} / 4$	t	
$\mathrm{a}\left(\mathrm{m} / \mathrm{s}^{2}\right)$						
$\mathrm{y}(\mathrm{m})$						
$\mathrm{v}(\mathrm{m} / \mathrm{s})$						

4. Fill in the data tables at the right, doing whatever additional calculations that are necessary.

x-direction						
$t(\mathrm{sec})$	0	$\mathrm{t} / 4$	$\mathrm{t} / 2$	$3 \mathrm{t} / 4$	t	
$\mathrm{a}\left(\mathrm{m} / \mathrm{s}^{2}\right)$						
$x(\mathrm{~m})$						
$v(\mathrm{~m} / \mathrm{s})$						

5. Transfer your table information to the duplicate tables on the back.

y-direction						
$t(\mathrm{sec})$	0	$\mathrm{t} / 4$	$\mathrm{t} / 2$	$3 \mathrm{t} / 4$	t	
$\mathrm{a}\left(\mathrm{m} / \mathrm{s}^{2}\right)$						
$\mathrm{y}(\mathrm{m})$						
$v(\mathrm{~m} / \mathrm{s})$						

x-direction						
$t(\mathrm{sec})$	0	$\mathrm{t} / 4$	$\mathrm{t} / 2$	$3 \mathrm{t} / 4$	t	
$\mathrm{a}\left(\mathrm{m} / \mathrm{s}^{2}\right)$						
$\mathrm{x}(\mathrm{m})$						
$\mathrm{v}(\mathrm{m} / \mathrm{s})$						

6. Use your data tables to draw the following graphs.

cstephenmurray.com

Copyright © 2011, C. Stephen Murray

y-direction						
$t(\mathrm{sec})$	0	$\mathrm{t} / 4$	$\mathrm{t} / 2$	$3 \mathrm{t} / 4$	t	
$\mathrm{a}\left(\mathrm{m} / \mathrm{s}^{2}\right)$						
$\mathrm{y}(\mathrm{m})$						
$v(\mathrm{~m} / \mathrm{s})$						

x-direction						
$t(\sec)$	0	$t / 4$	$t / 2$	$3 t / 4$	t	
$a\left(\mathrm{~m} / \mathrm{s}^{2}\right)$						
$x(\mathrm{~m})$						
$v(\mathrm{~m} / \mathrm{s})$						

6. Use your data tables to draw the following graphs.

Drawing Projectile Motion Graphs

A projectile is shot from the ground and lands on the ground. Its initial velocity is $26 \mathrm{~m} / \mathrm{s}$ at 49°.

1. Calculate the initial x and y velocities:

$$
\begin{aligned}
& \text { Calculate the initial } x \text { and } y \text { velocities: } \\
& V_{y}=26 \sin 49^{\circ}=19.6 \mathrm{~m} / \mathrm{s} \mid V_{x}=26 \cos 49^{\circ}=17.1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

2. Calculate the time the object is in the air:

$$
\begin{aligned}
V_{F} & =V_{i}+2 t \\
-19.6 & =19.6-9.8 t \\
-39.2 & =-9.8 t
\end{aligned} \quad t=4 \sec
$$

y -direction					
t	0	$\mathrm{t} / 4$	$\mathrm{t} / 2$	$3 \mathrm{t} / 4$	t
$\mathrm{a} \mathrm{m} / \mathrm{s}^{2}$	-8	-	-		\rightarrow
$\mathrm{y}(\mathrm{m} / \mathrm{m}$	0	14.7 m	19.6	14.7	0
$\mathrm{v} / \mathrm{m} / \mathrm{s}$	19.6	$9.8 \mathrm{~m} / \mathrm{s}$	0	-9.8	-19.6

3. Calculate the range (final x position):

$$
S=\frac{D}{T} \quad D=5 T=17.1(4)=68.4 \mathrm{~m}
$$

4. Fill in the data tables at the right, doing whatever additional calculations that are necessary.

x -direction					
t	0	$\mathrm{t} / 4$	$\mathrm{t} / 2$	$3 \mathrm{t} / 4$	t
a	0	-			\rightarrow
$\mathrm{x}(\mathrm{m})$	0	17.1	34.2	51.3	68.4
v	17.1				\rightarrow

$$
\begin{gathered}
V_{F}^{2}=V_{i}^{2}+2 \Delta \Delta y \text { (at top) } \\
0=19.6^{2}+2(-a .8) \Delta y \\
0=384.16-19.6 \Delta y \\
-384.16=-19.6 \Delta y \\
\Delta y=19.6 \mathrm{~m}
\end{gathered}
$$

$$
\begin{aligned}
& \Delta y=v_{i} t+\frac{1}{2} \partial t^{2} \\
& \Delta y=19.6(1)-4.9\left(1^{2}\right) \\
& \Delta y=14.7 \mathrm{~m} \\
& \text { Uat lsec: } \\
& V_{F}=v_{i}+2 t=19.6-9,8(1) \\
& \left.\begin{array}{l}
=9.8 \mathrm{~m} / \mathrm{s} \\
\partial t \quad 3 s e= \\
\Delta y=v_{i} t+\frac{1}{2} \partial t^{2}, ~
\end{array} \quad \begin{aligned}
\Delta y & =19.6(3)-4.9\left(3^{2}\right) \\
\Delta y & =14.7 \mathrm{~m}
\end{aligned} \right\rvert\, \begin{aligned}
v_{f} & =v_{1}+2 t \\
v_{F} & =19.6-9.8(3) \\
& =-9.8 \mathrm{~m} / \mathrm{s}
\end{aligned}
\end{aligned}
$$

5. Transfer your table information to the duplicate tables on the back.
cstephenmurray.com
Copyright © 2011, C. Stephen Murray

Drawing Projectile Motion Graphs

A projectile is shot from the ground and lands on the ground. Its initial velocity is $26 \mathrm{~m} / \mathrm{s}$ at 49°.

1. Calculate the initial x and y velocities:
$V_{y}=26 \sin 49^{\circ}=19.6 \mathrm{~m} / \mathrm{s} \mid V_{x}=26 \cos 49^{\circ}=17.1 \mathrm{~m} / \mathrm{s}$
2. Calculate the time the object is in the air:
$V_{F}=V_{i}+2 t$

$$
\begin{aligned}
V F & =v .12 t \\
-19.6 & =19.6-9.8 t \\
-39.2 & =-9.8 t
\end{aligned} \quad t=45 e c
$$

y -direction					
t	0	$\mathrm{t} / 4$	$\mathrm{t} / 2$	$3 \mathrm{t} / 4$	t
$\mathrm{a} \mathrm{m} / \mathrm{s}^{2}$	-8	-	-	-	\rightarrow
$\mathrm{y}(\mathrm{mm})$	0	14.7 m	19.6	14.7	0
$\mathrm{v} \mathrm{m} / \mathrm{s}$	19.6	$9.8 \mathrm{~m} / \mathrm{s}$	0	-9.8	-19.6

3. Calculate the range (final x position):

$$
S=\frac{D}{T} \quad D=5 T=17.1(4)=68.4 \mathrm{~m}
$$

4. Fill in the data tables at the right, doing whatever additional calculations that are necessary.

$$
\begin{gathered}
V_{f}^{2}=V_{i}^{2}+2 \Delta \Delta y(a t \text { top) } \\
0=19.6^{2}+2(-9.8)^{\Delta y} \\
0=384.16-19.6 \Delta y \\
-384.16=-19.6 \Delta y \\
\Delta y=19.6 \mathrm{~m}
\end{gathered}
$$

$$
\begin{aligned}
& \text { at } 1 \leq=<= \\
& \text { at isec= } \\
& \Delta y=v_{i} t+\frac{1}{2} \partial t^{2} \\
& \Delta y=19.6(1)-4.9\left(1^{2}\right) \\
& \Delta y=14.7 \mathrm{~m} \\
& \text { Vat isec: } \\
& V_{F}=v_{i}+2 t=19.6-9.8(1)
\end{aligned}
$$

5. Transfer your table information to the duplicate tables on the back.

y-direction					
t	0	$\mathrm{t} / 4$	$\mathrm{t} / 2$	$3 \mathrm{t} / 4$	t
$\mathrm{a} \mathrm{m} / \mathrm{s}^{2}$	$-马$	-		-	\rightarrow
$\mathrm{y}(\mathrm{m})$	0	14.7 m	19.6	14.7	0
$\mathrm{v} \mathrm{m} / \mathrm{s}$	19.6	$9.8 \mathrm{~m} / \mathrm{s}$	0	-9.8	-19.6

x -direction					
t	0	$\mathrm{t} / 4$	$\mathrm{t} / 2$	$3 \mathrm{t} / 4$	t
a	0	-			\rightarrow
$\mathrm{x}(\mathrm{m})$	0	17.1	34.2	51.3	68.4
v	17.1				\rightarrow

cstephenmurray.com

Copyright © 2011, C. Stephen Murray

y-direction					
t	0	$\mathrm{t} / 4$	$\mathrm{t} / 2$	$3 \mathrm{t} / 4$	t
$\mathrm{a} \mathrm{m/s}$	-8	-			\rightarrow
y (ms $)$	0	14.7 m	19.6	14.7	0
$\mathrm{v} \mathrm{m} / \mathrm{s}$	19.6	$9.8 \mathrm{~m} / \mathrm{s}$	0	-9.8	-19.6

x-direction					
t	0	$\mathrm{t} / 4$	$\mathrm{t} / 2$	$3 \mathrm{t} / 4$	t
a	0	-			\rightarrow
$\mathrm{x}(\mathrm{m})$	0	17.1	34.2	51.3	68.4
v	17,1				\rightarrow

6. Use your data tables to draw the following graphs.

Copyright © 2011, C. Stephen Murray

