Graphically Adding Vectors

Page 1-Instructions and Vector information. Path information at bottom of page.
Page 2-blank grid paper.
Page 3-key to ex 1
Page 4-key to ex 2
Disclaimer: Through the use of pdf files, I hope that the pages have the same dimensions as mine, but realizing that each printer could be different, it is possible that your measurements could be off from my key.

Instructions: Start at the given grid point. Then perform the vector operations to find the ending point. Your resultant is from the starting point to the ending point. Your answer should be given as a measurement of the resultant (with units) and the resultant's direction. I wrote these examples so that each vector locks onto a grid point. In an actual example, this may or may not be true. Do not assume this.

Step 1: Set up the vectors by multiplying (like 2 B) and adding 180° to any negative vectors.
Step 2: Find the starting point on the graph paper grid.
Step 3: Graph each vector. Start the second vector at the end of the first vector.
Step 4: Check yourself with the keys on p. 3 and 4.

Example 1: Given Vectors:

$$
\begin{array}{ll}
\mathrm{A}=2.8 \mathrm{~cm} \text { at } 270^{\circ} & \mathrm{C}=5.25 \mathrm{~cm} \text { at } 135^{\circ} \\
\mathrm{B}=5 \mathrm{~cm} \text { at } 30^{\circ} & \mathrm{D}=1.6 \mathrm{~cm} \text { at } 29.5^{\circ}
\end{array}
$$

Graph: 2B -2A + C - 4D Starting at j9
(the set up of the vectors is at bottom of this page)

Example 2: Given Vectors:

$$
\begin{array}{ll}
\mathrm{A}=5.7 \mathrm{~cm} \text { at } 103^{\circ} & \mathrm{C}=2.5 \mathrm{~cm} \text { at } 156^{\circ} \\
\mathrm{B}=5.1 \mathrm{~cm} \text { at }-104^{\circ} & \mathrm{D}=4.35 \mathrm{~cm} \text { at } 180^{\circ}
\end{array}
$$

Graph: - $\mathbf{3 C}+\mathbf{B}+2 \mathrm{D}-\mathbf{A} \quad$ Starting at F14
(the set up of the vectors is at bottom of this page

Key Ex 1: 2B-2A + C-4D Starting at j9

Key Ex 2: -3C + B + 2D -A Starting at F14

