Due Tues., Sept 25

2012 PreAP Two Dimensions 3

- 1. Six vectors of equal magnitude (equal length) are shown on the compass at the right. Notice that some of them are opposites of others.
 - A. Vector D is obviously = to -Vector A. OR D = -A. The direction of A is 0°. What is the direction of D?
 - B. C = -F. The direction of F is _____. The direction of C is____.
 - C. Subtract the direction of F from C and you get how many degrees?
 - D. OR $30^{\circ} + \underline{\hspace{1cm}} = 210^{\circ}$.
 - E. E = -B. OR $130^{\circ} + \underline{} = 310^{\circ}$.
 - F. But going from B to E you would NOT add 180°. Take 310° and subtract 130°. What do you get?

So, when a vector is subtracted you add or subtract 180°.

- *B = $2.1 \text{ cm at } 150^{\circ}. -3B =$
- 3. If A = 3.5cm at 60° , then -2A =
- A person walks 15 m west, 10 m north, 25 m east, 6 m south, then another 8 m north.

A)
$$\Delta X_{\text{total}} =$$

B)
$$\Delta Y_{total} =$$

- C) Using X_{total} and Y_{total} , draw the triangle.
- D) Calculate the resultant's magnitude and direction.

-80

- 5. An object moves 28 m at 55° and then 16 m at 30° .
 - A) On the diagram, resolve vector 1 and 2 into their components. (Now you have only x's and y's. YEA! And the rest of this problem is like #4, above.)
 - B) Find X_{total}:
 - C) Find Y_{total}:
 - D) With X_{total} and Y_{total} , draw your resultant's triangle below and calculate the resultant's magnitude and direction.

- Vector A = 15 m and Vector B = 5 m. Vector B can swivel, as shown.
 - A. What is the largest the resultant could possibly be? (What is the greatest displacement from your starting position?)
 - B. What is the shortest the resultant could possibly be? (What is the shortest displacement from your starting position?)
- Vector (has magnitude and direction) or Scalar (only magnitude)?

Pressure

Distance

* Acceleration D.

___ Displacement F.

___ Speed

Mass or Weight?

18 Newtons A.

D. ____ Does exist in space.

- __15 kilograms
- E. ____ Same on the moon.
- _*Doesn't exist in space.
- F. ____ Different on the moon.

More on back

Mass (in kg) is all of an object's atoms and molecules (its matter). Weight (in N) is gravity's pull on your weight.

- 9. What is the weight of a 12 kg object?
- 10. What is the mass of a 150 N object?

- 2) 3B = 6.3 cm at 150° ; -3B = 6.3 cm at 330° (opposite direction).
- 4D) H = 15.6 m; $\theta = 50.2^{\circ}$
- 5) $R = 43.1 \text{ m}; \quad \theta = 46^{\circ}$
- 7A) Mass is a scalar because 5 kg to the right makes on sense.
- 7B) Acceleration is a vector.
- 8C) Weight (you still have your atoms and molecules in space, I hope)