1. Being sure to use correct directions (not just angles). Find the x and y components for the following vectors.

2. Given the following x and y components, calculate the magnitude (hypotenuse) and direction of the vector. (BIG TANGENT HINT: remember to figure out what quadrant your arrow should be in. Add 180° if necessary.)

3. Use the arrows at the left to answer the following.
A. \qquad * Which arrow has +x and -y components? (which is pointing in the $+x$ and $-y$ directions?)
B. \qquad * Which arrow has -x and +y components?
C. \qquad Which arrow has $+x$ and no y component?
D. \qquad Which arrow/s have no x component?
E. \qquad Which arrow is the negative of A ?
F. \qquad Which arrow $=-B$?
G. ___ Which arrow has -x and -y components?

H . What does $\mathrm{A}+\mathrm{D}$ equal? (If you walked the direction of A and then the direction of D, what would be your total displacement?)

Still using the A-H arrows as displacement vectors (distances with directions)....
4. A. A strange person (named "Crazy") walks the direction of A, then C, then E, then 2D (D twice). Starting at the point marked "start" draw Crazy's path.
B. A second person, standing at the same starting point, watches Crazy walk his crazy path, but being Lazy, walks to Crazy in a straight line. Use an arrow to show Lazy's path. Label this arrow " R " for the resultant (the result of all of Crazy's path).
5. * Using the same story of Crazy and Lazy above...
A. At the left draw Cray's path: $\mathrm{G}+\mathrm{F}+2 \mathrm{E}-2 \mathrm{~A}$ [opposite of A, twice]. (It's OK if the path crosses, since he's Crazy.)
B. Draw Lazy's path, labeling it " R ".
6. Let me walk you thru the logic of trigonometry one more time, using the 45° triangle drawn below.
A. Measure the length of the hypotenuse up to the first arrow. This is H_{1} (hypotenuse 1). Use the obvious number.
B. X_{1} is the x -component of H_{1}, which ends directly below the end of H_{1}. Measure the length of x_{1}.
C. Calculate the ratio of x_{1} to H_{1} :

$$
\frac{x_{1}}{H_{1}}=
$$

D. Realizing that as a 45° triangle, $\mathrm{x}_{1}=\mathrm{y}_{2}$, calculate the ratio of y_{1} to H_{1} :
$\frac{y_{1}}{H_{1}}=$
E. Measure H_{2} (end of the meter stick [oops, I gave it away]).
F. Measure x_{2} (and, therefore y_{2}).
G. Calculate the following ratios:
$\frac{x_{2}}{H_{2}}=$
$\frac{y_{2}}{H_{2}}=$
H. What do you notice?
I. Being sure your calculator is in degrees, give the following:

