PreAP Two Dimensions 16

1. (Hint*) Person A walks 55 m at 38°. Then the person turns and walks 20 m directly north. A Person B starts at the same place as Person A. What direction and distance does Person B have to walk to walk straight to Person A's final position (and what is Person B's name)?

Remember: the magnitude of a vector is how long the arrow is. Magnitude can never be negative (but it can be zero). The direction can be anything between 0° and 360°. Given $25 \mathrm{~m} / \mathrm{s}$ at $15^{\circ}, 25 \mathrm{~m} / \mathrm{s}$ is the magnitude and 15° is the direction taken from the $+x$ axis.
2. If two vectors (arrows) have unequal magnitudes (length of $A \neq$ length of B), can their sum (addition) ever be zero?
3. If vector A is added to vector B, how is it possible for their sum to $=$ exactly $A+B$?

4. Three vectors, A, B, and C, are added together head to tail and form a closed loop, as shown. What is the total displacement of the three vectors?

Remember that a "component" is the x or y part of the triangle.
5. How can a vector have a component (x or y) equal to zero, but not have a nonzero magnitude (the arrow does not equal zero)?
6. A cannon can be shot at various angles, but has the same velocity: $42 \mathrm{~m} / \mathrm{s}$. Assume it is shot from the ground to the ground.
A. ${ }^{*}$ Calculate its range and hang time (time in the air) if it is shot at 20°.
B. ${ }^{*}$ Calculate its range and hang time, if it is shot at 45°.
C. Calculate its range and hang time, if it is shot at 70°.
D. $20^{\circ} ; 45^{\circ} ; 70^{\circ}$; none; or all?
i. _He_ Has the fastest initial velocity (total).
j. \qquad Has the greatest vertical acceleration.
k. \qquad Has the greatest range.

1. \qquad Stays in the air the longest.
m . \qquad Moves downrange fastest (greatest $V x$).
n. \qquad Has the smallest initial Vy.
E. (Still working with the same information) Why is 45° the greatest range for a projectile shot ground to ground?
F. When the cannon is shot at 20°, what is its final x-velocity?
G. When the cannon is shot at 45°, what is the projectile's velocity at the very top of its path?

Q1 Hint: just add vectors: (\sin , \cos, etc). When it says "directly north" the angle is 90°. Q6A: $\mathrm{Vyi}=14.365 \mathrm{~m} / \mathrm{s} ; \mathrm{Vxi}=39.467 \mathrm{~m} / \mathrm{s} ; \mathrm{t}=2.93 \mathrm{sec} ;$ range $=115.7 \mathrm{~m}$. Q6B: 180 m
Q6Di-same $\mathrm{V}=42 \mathrm{~m} / \mathrm{s}$ for all angles.

