PreAP Two Dimensions 13

These next problems are beyond the basic projectile motion problems. Though they are more challenging, the basics of projectile motion have not changed: ay still equals $-9.8 \mathrm{~m} / \mathrm{s} 2$, etc. Put in what you know. Solve for what you can and the answers will eventually reveal themselves. Fight with this. Only answers are given. So no work: no credit.

1. A projectile is shot horizontally from the top of a 120 cm tall table. It lands 2.0 m away. Calculate how fast it was shot?

A. Since the units for acceleration are METERS/ s^{2}, you have to work in meters. So, change 120 cm to:
B. * Put in all the information you know in both directions. Solve for what you can and then use that information to find the velocity it was shot.

y -direction: $|$| x -direction: |
| :--- | :--- |

2. Let's use Slim Jim and the hoop, again. This time Jim shoots at $3.5 \mathrm{~m} / \mathrm{s}$ at an angle of 55°.
A. * Calculate how far away the ball lands.
B. * So, obviously the hoop is half way, so what is the distance from Jim to the hoop in the x -direction (the x-coordinate of the hoop).
C. * The y-coordinate of the hoop is the highest point in the y-direction. So, calculate the highest point of the projectile.
3. A projectile is launched from the ground to the ground. Which of the graphs would portray:

cstephenmurray.com

A. \qquad a y (y dir acceleration).
B. \qquad The horizontal position.
C. \qquad a_{x} (x acceleration)
D. \qquad Vertical position.
E. \qquad Vy (vertical velocity)
F. \qquad Vx (horizontal velocity)

1B) $4.0 \mathrm{~m} / \mathrm{s}$
2A) 1.18 m
2B) 0.59 m
2C) 0.43 m

