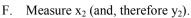

PreAP Two Dimensions 2

1. Being sure to use correct directions (not just angles). Find the x and y components for the following vectors.

2. Given the following x and y components, calculate the magnitude (hypotenuse) and direction of the vector. (BIG TANGENT HINT: remember to figure out what quadrant your arrow should be in. Add 180° if necessary.)

• Start

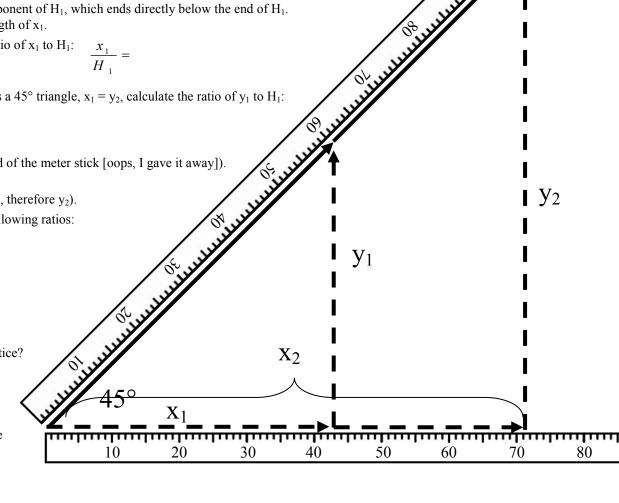
- 3. Use the arrows at the left to answer the following.
 - A. $\frac{* \text{ Which arrow has} + x \text{ and } -y \text{ components?}}{(which is pointing in the +x and -y directions?)}$
 - B. ____* Which arrow has –x and +y components?
 - C. Which arrow has +x and no y component?
 - D. Which arrow/s have no x component?
 - E. Which arrow is the negative of A?
 - F. Which arrow = -B?
 - G. Which arrow has –x and –y components?
 - H. What does A + D equal? (If you walked the direction of A and then the direction of D, what would be your total displacement?)


Still using the A-H arrows as displacement vectors (distances with directions)....

- 4. A. A strange person (named "Crazy") walks the direction of A, then C, then E, then 2D (D twice). Starting at the point marked "start" draw Crazy's path.
 - B. A second person, standing at the same starting point, watches Crazy walk his crazy path, but being Lazy, walks to Crazy in a straight line. Use an arrow to show Lazy's path. Label this arrow "R" for the resultant (the result of all of Crazy's path).
- 5. * Using the same story of Crazy and Lazy above...
 - A. At the left draw Cray's path: G + F + 2E 2A [opposite of A, twice]. (It's OK if the path crosses, since he's Crazy.)
 - B. Draw Lazy's path, labeling it "R".

- 6. Let me walk you thru the logic of trigonometry one more time, using the 45° triangle drawn below.
 - A. Measure the length of the hypotenuse up to the first arrow. This is H₁ (hypotenuse 1). Use the obvious number.
 - B. X_1 is the x-component of H_1 , which ends directly below the end of H_1 . Measure the length of x_1 .
 - C. Calculate the ratio of x_1 to H_1 :
 - D. Realizing that as a 45° triangle, $x_1 = y_2$, calculate the ratio of y_1 to H_1 :

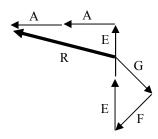
E. Measure H₂ (end of the meter stick [oops, I gave it away]).


G. Calculate the following ratios:

$$\frac{x_2}{H_2} =$$

$$\frac{y_2}{H_2} =$$

- H. What do you notice?
- Being sure your calculator is in degrees, give the following:


 $Cos 45^{\circ} =$ Sin 45° =

Tan, Cos, and Sin are the RATIO of two sides. They give the percentage of how big they are in relation to each other. $Sin 30^{\circ} = 0.5$ MEANING: the side opposite to a 30° angle will ALWAYS be 1/2 the length of the hypotenuse. For a 45° triangle the sides are both 71% of the hypotenuse. (This was discovered by the ancient Greeks thousands of years ago. Kinda makes ya wanna wear a toga, huh?!?)

- 1A. x = -24.5 m; y = -20.6 m 1B. x = 0 m; y = -8 m. 2A. H = 15.2 m; $\theta = 23.2^{\circ}$;
- 2B. H = 8.7 m; θ = 149° (must be in 2nd quadrant (to the left and up); tan gives -31° so add 180°);
- 3A) G (+x means to the right; -y means down) 3B) B

5)

