
PreAP Two Dimensions 1

- 1. Algebra works by inverse functions. So, you have to know what the inverse of each function is.
 - A. The inverse of multiplication is *division*. B. The inverse of subtraction is
 - C. * The inverse of a square root is
- D. * The inverse of cosine is

So, let me show you how to perform inverse trig functions one more time. Follow along with your calculator. Do both examples:

Ex. 1: Sin $30^{\circ} = 0.5$ (Push sin, then 30, then =, gives 0.5) So, $Sin^{-1}(0.5) = 30^{\circ}$ (Push Inv, then 0.5, then =, gives 30°)

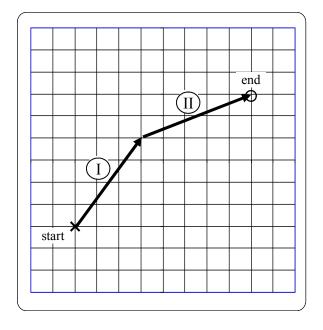
25

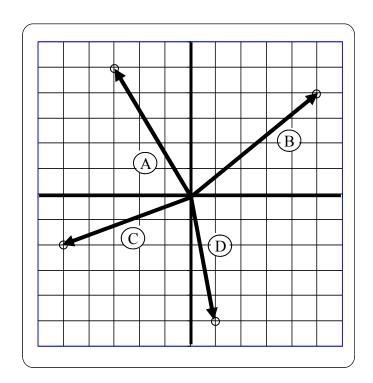
W<

Ν

S

► E


- 2. * Solve for the angle using tangent and the hypotenuse using Pythagorean theorem. (DO NOT use the hypotenuse to find the angle.)
- 3. * Calculate the x and y components of the 14 m arrow. You should know how to find the correct direction, too.


Don't out think the following questions. Notice the compass directions at the left if you are confused.

- Positive or Negative? 4 Walking east? A. Walking north? Β. C. Walking south? D Walking west?
- 5. Δx or Δy ? Walking east? Α Walking north? Β. C. Walking south? D Walking west?
- * A person walks 4 m north, then 8 m south, then, totally confused, walks another 10 m north. 6. Find their y-direction displacement (Δy). (If they started at the origin, where did they end up?) Write each *individual displacements, keeping track of + and -, then solve.*
- 7. Another confused person walks 15 m east, then 20 m west, then 2 m east. What is their displacement?
- A third, VERY confused person walks 30 m west, then 10 m north, then 5 m south, then 40 m east, then another 6 m north. 8. A) Find Δx . B) Find Δy .
 - C) Using the Pythagorean theorem, find their total displacement (use " $A^2 + B^2 = C^2$ " Δy and Δx are A and B [doesn't matter] which], *C* is the magnitude of their total displacement, which is always positive).
 - D) Using $\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{y}{x}$, find their direction.
- * (As you did before.) A FOURTH PHENOMENALLY confused person walks 72 m east, 30 m north, 60 m west, 45 m south, 9. and another 5 m south. Find the person's total displacement: magnitude and direction (pyth and tan).

Let me explain the grid. The non-arrow black lines are the x and y axis. The arrows represent motion (vectors). Each vector starts at the origin (0,0) and ends at the end of the arrow (the circle). (I assume you know which is the x and y axis and which directions are positive and negative.) To simplify things, let's make each square equal to 1 meter. When I ask for Δx or Δy I am asking for how far the object moves in the x direction and y direction from its start to its end. Since each arrow starts at the origin, the displacements are the x and y coordinates of the final position (since initial positions are 0,0). ALSO—Some displacements can be negative!!!!!

- 10. Which arrows have negative y coordinates?
- 11. Which arrows have negative x coordinates?
- 12. * For Arrow B:
 - A) $\Delta x = _; \Delta y = _$.
 - B) Using Δx and Δy as A and B, find the total displacement of Arrow B (find "hypotenuse").
- 13. For Arrow A: (notice negatives)
 - A) $\Delta x = _$; $\Delta y = _$.
 - B) Find the total displacement of Arrow A.
- 14. * Find the total displacement of Arrow C.
- 15. Find the total displacement of Arrow D.

- 16. A similar grid (where each square is 1 m) shows the motion of a person. They walk the direction and distance of I, then II, ending up at the circle.
 - A. For I: $\Delta x = ___ \Delta y = __$.

 - B. For II: $\Delta x = ___ \Delta y = __$. C. * Totals: $x_{total} = __ y_{total} = _$.
 - D. Draw a straight line arrow from the start to the finish.
 - E. Make a triangle from your arrow:
 - From the end of your arrow (the circle), draw a vertical i. line down.
 - ii. From the start of your arrow (the x), draw a horizontal line to the right that connects with your vertical line.
 - F. Using your x_{total} and y_{total} calculate the magnitude of your arrow.
 - G. * Using tangent, calculate the direction of your arrow.

1D) inv cos or cos⁻¹ 2) $\theta = \tan^{-1}(4/12) = 18.4^{\circ}$ | Hyp = 12.6 m 3) Use 155°, so x = -12.7 m; y = 5.92 m 1C) squaring; 6) $\Delta y = 6 \text{ m}$ 9) $\Delta x = +12 \text{ m}; \Delta y = -15 \text{ m}; D_{\text{total}} = 19.2 \text{ m}; \theta = \tan^{-1}(-15/12) = -51.3^{\circ}$ 12A) $\Delta x = 5; \Delta y = 4; H = 6.4 \text{ m}$ 16C) x total = 8m; y total = 6m; 16G) $\theta = \tan^{-1}(6/8) = 36.9^{\circ}$ 14) 5.4 m

cstephenmurray.com

Copyright © 2011, C. Stephen Murray