\qquad

$$
1.2 \cdot 10^{3}=1.2 \times 10^{3}=1.2 \times 1000=1,200
$$

5.41022×10^{5} in standard notation is 541,022 2.089×10^{-4} in standard notation is 0.0002089
$6.1 \times 10^{-3}=6.1 \times \frac{1}{10^{3}}=6.1 \times \frac{1}{1000}=\frac{6.1}{1000}=0.0061$
341.5×10^{4} is wrong \quad correct is: 3.415×10^{6}

1. Write the following numbers in scientific notation.
A. * $12,756 \mathrm{~km}($ diameter of the earth $)=$
B. $0.082=$
C. $702,000,000=$
D. $0.0000000000000000000000000266 \mathrm{~kg}=$ (mass of an oxygen atom) [this why we like scientific notation]
2. Write out these numbers in standard notation.
A. $* 5.902 \times 10^{-4}=$
B. $3 \times 10^{8} \mathrm{~m} / \mathrm{s}($ the speed of light $)=$
C. $9.11 \times 10^{-31} \mathrm{~kg}$ (the mass of an electron) $=$
3. In scientific notation 18.3×10^{4} is incorrect. It should be written as:

Fractions (study the following examples):
Ex. 1:

Ex. 4: Separate and simplify: $\frac{4+3}{2}=\frac{4}{2}+\frac{3}{2}=2+\frac{3}{2}$
4. Simplify:
B. $\frac{1}{r}+\frac{1}{t}=$
C. $* \frac{\left(\frac{y}{t}\right)}{\left(\frac{y t}{p}\right)}=$
D. $\frac{5+3 x}{x}=$

Exponents: $x^{0}=1 ;$ Using the carat key (\wedge) you can prove this on your calculator: $5^{0}=1$ and $8^{0}=1$.
Exponents in fractions: $1 /\left(x^{-2}\right)=x^{2}$ And: $x^{-6}=1 /\left(x^{6}\right)$ for proof, see the scientific notation examples at the very top.
Multiplying exponents: $x^{4} x^{6}=x^{10}$ Proof: $\left(10^{2}\right)\left(10^{3}\right)=100(1000)=100,000=10^{5}$
Exponents of exponents: $\left(x^{4}\right)^{6}=x^{24}$ Proof: $\left(10^{2}\right)^{3}=\left(10^{2}\right)\left(10^{2}\right)\left(10^{2}\right)=100(100)(100)=1,000,000(6$ zeroes $)=10^{6}$
5. Simplify:
A. $* t^{-2} \mathrm{t}^{6}=$
B. $\mathrm{q}^{8} \mathrm{q}^{4} / \mathrm{q}^{-3}=$
C. $*\left(a^{6}\right)^{1 / 2}=$
D. $\left(\left(c^{2}\right)^{-4}\right)^{1 / 2}=$

Simultaneous equations: If there are two variables you can solve only if there are two equations. (Graphically, you are finding the intersection between two functions.) Example: $2 x+3 y=4$ and $x-2 y=-5$

Way 1: solve for one of the variables in either equation: $x=2 y-5$; then substitute into the OTHER equation:

so: $2(2 y-5)+3 y=4$

Way 2 : subtract one equation from the other. You may have to multiply one of the equations by a number so that one of the variables can be eliminated.

Multiply the second equation by -2 : $-2(x-2 y=-5)$
becomes $-2 x+4 y=10$

$$
\begin{gathered}
2 x+3 y=4 \\
-2 x+4 y=10 \\
\hline 7 y=14
\end{gathered}
$$

$$
y=2
$$

$$
\begin{gathered}
2 x+3(2)=4 \\
2 x+6=4 \\
2 x=-2 \\
x=-1
\end{gathered}
$$

Then solve for the other variable as shown above.
6. * $4 x-10 y=2$ and $3 x+5 y=14$. Solve for x and y.
$\begin{array}{lll}\text { Basic Algebra: } & \text { Given: } I=\frac{Q}{t} \text { solve for } \mathrm{t} & \text { 1) Multiply by } \mathrm{t}: I(t)=\frac{Q}{t}(t) \\ & \text { 3) Divide by } \mathrm{I}: \quad \frac{I t}{I}=\frac{Q}{I} \\ & \text { 2) Now: } I t=Q & \text { 4) } t=\frac{Q}{I}\end{array}$
Proof: $4=\frac{12}{3}$, so $4(3)=12$ and $3=\frac{12}{4} \quad$ Just cross-multiply.
7. * If $\frac{x+y}{F}=\frac{1}{t}$ then $t=$
8. If $\frac{a}{b}=\frac{c}{d}$ then $d=$
9. * $I=\frac{P}{4 \pi r^{2}}$ then $r=$ (see help at right)
10. $T_{\text {spring }}=2 \pi \sqrt{\frac{m}{k}} \quad$ Solve for k :

Squares and square roots:

$4^{2}=4(4)=16$ so, $\sqrt{16}=4$
likewise: $x(x)=x^{2}$ so, $\sqrt{\mathrm{x}^{2}}=x$

Given: $v_{f}^{2}=v_{i}^{2}+2 a \Delta x$ solve for v_{i} Isolate the variable: $v_{f}^{2}-2 a \Delta x=v_{i}^{2}$
Take the square root: $v_{i}=\sqrt{v_{f}^{2}-2 a \Delta x}$ And you can't just take out the $v_{f}{ }^{2}$.

Getting rid of decimals: Multiply by a number to remove the decimal.

Ex. 1: $\quad(0 . \overline{33}) x=2$ multiply by 3

$$
1 x=6 \text { so, } x=6
$$

Ex. 2: $\frac{0.5}{30}=\frac{0.2}{x}$ solve for x multiply both sides by 10 :
so, $\frac{5}{30}=\frac{2}{x}$
$5 x=60$
$x=12$
11. * Solve for $\mathrm{t}: \frac{0.25 t}{3}=2$
12. Simplify: $\frac{\left(9 \times 10^{-9}\right)\left(5 \times 10^{3}\right)}{\left(4.5 \times 10^{-5}\right)}=$
(Additional hint: see the very first example. The 10^{x} parts don't have to stay attached to their numbers.)

Answers to asterisks:

$$
\varepsilon_{\varepsilon} \mathrm{E}\left(\mathrm { OS } \quad \downarrow ^ { \mathfrak { 1 } } \left(\mathrm { VS } \quad \left(\mathrm{Ot} \quad \frac{\tau^{\mathfrak{l}}}{d}=\left(\frac{\mathfrak{\alpha}}{d}\right)\left(\frac{\downarrow}{\kappa}\right)\right.\right.\right.
$$

$$
\begin{aligned}
& (K+x) / B=7(L \\
& \mathrm{I}=\kappa: \left.\varepsilon=\mathrm{x} \xrightarrow{\frac{I \mathscr{U} t}{d}} \right\rvert\,=\mu \text { os } \frac{I \mathscr{\Downarrow} t}{d}={ }_{\tau} \cdot d
\end{aligned}
$$

Trigonometry relates the following 4 quantities.

x is the adjacent side

Trig formulas:
$\operatorname{Sin} \theta=\frac{\text { opp }}{\text { hyp }}$
$\operatorname{Cos} \theta=\frac{\text { adj }}{\text { hyp }}$
$\operatorname{Tan} \theta=\frac{\text { opp }}{\text { adj }}$

The ratios of common angles:

	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	$1 / 2$	$3 / 5$	$\sqrt{2} / 2$	$4 / 5$	$\sqrt{3} / 2$	1
$\cos \theta$	1	$\sqrt{3} / 2$	$4 / 5$	$\sqrt{2} / 2$	$3 / 5$	$1 / 2$	0
$\tan \theta$	0	$\sqrt{3} / 3$	$3 / 4$	1	$4 / 3$	$3 / \sqrt{3}$	∞

Ex1: Solve for x. Step 1: Assign variables: Step 3: Put in \#'s + solve:

$\mathrm{x}=$ \qquad
$\operatorname{Cos} \theta=\frac{\text { adj }}{\text { hyp }}$ $\frac{\sqrt{2}}{2}=\frac{x}{8} \quad$ cross-multiple $\frac{8 \sqrt{2}}{2}=x$, so $x=4 \sqrt{2}$

Ex2: Solve for θ.
Step 1:

Step 2: hypo, opp, and θ is \sin
Step 3: $\sin \theta=\frac{\text { opp }}{\text { hyp }}=\frac{3}{4}$
$3 / 4$ is not in table, so take $\sqrt{ }$
$\sin \theta=\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{2}$ so $\theta=60^{\circ}$
13. * Solve for the angle.

14. Solve for the vertical side.

$$
\left.\frac{\varepsilon}{\varepsilon \varsigma}=6 / \varepsilon=\forall / O={ }_{o} 0 \varepsilon \cup \mathcal{Y}\right) \quad \circ 0 \varepsilon=\theta: \varepsilon I
$$

