2012 PreAP Linear Motion 14

1. A. * What direction will you use for the 18 m displacement?
B. * Calculate its x and y components.
2. A ball is thrown into the air.
A. On its way up, is its velocity becoming more or less positive?
B. Is that a positive or negative acceleration?
C. On its way down, is its velocity becoming more or less positive?
D. Is that a positive or negative acceleration?

3. The graphic shows an object moving to the right. A, B, and C show where it $C O U L D$ be after 3 seconds. As always right is + . Which position shows the object:
i. with a positive acceleration?
ii. with a negative acceleration?
iii. with no acceleration?
4. Now the object is moving to the left. Again, A, B, and C show where it COULD be after 3 seconds. Which position shows the object:
i. with a positive acceleration?
ii. with a negative acceleration?
iii. with no acceleration?

As we discovered in the last homework and in class, the area between the line and the x-axis is the displacement of the object.
5. Use the graphs at the left for the following.
A. From A to B calculate the displacement (area) of the object.
B. * From B to C calculate the displacement (area of the triangle).
C. * What is the total from A to C?
D. ${ }^{*}$ Calculate the displacement from C to D . It will be negative.
E. Calculate the displacement from D to E (also negative).
F. * What is the total from C to E?
G. Fill in the table, starting at 0 m and adding and subtracting the displacements you found above.

Follow my instructions carefully.
H. Draw dots to show where the object

Point	Time	Position
A	0 sec	0 m
B	8 sec	
C		
D		
E		

I. You should know that for two of the times the object was moving at constant speed. Use straight lines.
J. For the acceleration portion make sure to pass thru the dots and use a curve.
6. * Jar Jar Binks is sitting on the edge of a 25 m tall cliff. Suddenly a group of devote Star Wars fans sees him and does what any other true Star Wars fans would, they push him off the cliff. ("Meesa fallin!") How long does it take Jar Jar to hit the ground and how loud are the fans applauding?

1A) 120 degrees $\quad 1 B) x=-9 m$
5B) 2 m which is $1 / 2 \mathrm{bh}=1 / 2(2) 2$
5C) 18 m 5D) $-2 m \quad 5 \mathrm{~F})-18 \mathrm{~m}$
6) remember that $v i=0$ and $\Delta y=-25 \mathrm{~m} . \quad \mathrm{t}=2.26 \mathrm{sec}$

