

2012 PreAP Linear Motion 13

1. * Use the 20 m long arrow to answer the following. We start by drawing a vertical line from the tip of the arrow to the x -axis to create a right triangle. Find the x and y components of the 20 m long arrow (find x and y if 20 m is the hypotenuse).
2. * A. Remembering that all angles need to be measured clockwise from the positive x -axis, what is the correct direction for the 22 m arrow?

* B. Use the angle from the x -axis to calculate the x and y components, using the same equations that you used in Q1.

3. * A 2 kg rock is tossed straight up into the air. It goes 12 m . How fast was it thrown? (You have enough info. Your freefall notes can help.)
4. A 45 kg soapbox car starts at rest and rolls 85 m downhill in 6.4 seconds. What is the soapbox car's acceleration?

Graph I Position vs. Time

Time
5. Use the two graphs at the left to answer the following. Notice that graph II is a velocity vs time graph. Which segment shows? (There can be more than one answer.)
A) at rest?
E) $-v$?
B) $+\Delta v$?
F) $\Delta x=0$?
C) $-\Delta x$?
G) $+a$?
D) $+v$?
H) $-a$?
6. Translate Graph I to the velocity and acceleration graphs below.

Time

Time

Acceleration vs. Time

Time

7. An object is travelling $8 \mathrm{~m} / \mathrm{s}$ to the left for 4 seconds.
A. Remembering that left is negative, what is was the object's displacement?

You should have gotten -32 m.
B. Now calculate the area of the graph at the right. Notice that the line is BELOW the 0 axis.

So, once again, area equals displacement and AREA CAN BE NEGATIVE! (If below the 0 axis.)
8. But what if the shape is not a straight line? Let's use the velocity vs time graph at the left to find out.

time	position
0	0
1	
2	
3	
4	

A. At 0 seconds the object is moving \qquad m / s. After 1 second it is moving \qquad m / s. After 2 seconds it is moving \qquad m / s.
After 3 seconds it is moving \qquad m / s.
B. So, obviously, it is gaining \qquad m / s of velocity every second OR its acceleration is:

You should have found that the acceleration is $4 \mathrm{~m} / \mathrm{s}^{2}$ (also the slope of the line). Also, notice that the sloped line makes a triangle with the x-axis.
C. With a kinematic equation, calculate the displacement of the object from 0 to 1 seconds.

You should have that it moved 2 m . Record it in the table.
D. Draw a straight line from 1 second up to the line, making a small triangle. Remembering that the area of a triangle $=1 / 2($ Base $)$ (Height), calculate the area of the triangle.

Hmmmm. So the area of the triangle equaled the displacement of the object. [What about units? (Base)Height $=\sec (\mathrm{m} / \mathrm{sec})=$ meters or displacement]
E. With a kinematic equation, calculate the displacement of the object from 0 to 2 seconds.
F. Calculate the area of the triangle drawn straight up from 2 seconds.

And once again it works. Record it in the table.
G. Calculate the displacement of the object at 3 seconds and 4 seconds. Use the areas of the triangles. Record them in the table.
H. Draw these positions on the Position vs Time graph. For ease, let's assume the object started at 0 m . Just draw dots. The shape will be obvious after.

1A) $y=20 \sin 35^{\circ}=11.5 \mathrm{~m}$ find x on your own.
2A) θ is greater than 90°, so $\theta=90^{\circ}+35^{\circ}=125^{\circ}$
2B) $y=22 \sin 125^{\circ}=18 \mathrm{~m}$, find x.
3) Did you see that $\mathrm{Vf}=0 \mathrm{~m} / \mathrm{s}$ (at the top)? Use the $\mathrm{V}_{\mathrm{f}}{ }^{2}=\mathrm{V}_{\mathrm{i}}{ }^{2} \ldots$ formula to get $\mathrm{Vi}=15.3 \mathrm{~m} / \mathrm{s}$
4) $a=4.15 \mathrm{~m} / \mathrm{s}^{2}$

