To make things easier, we will always measure our angles from the $+x$-axis. OR- 0° will be to the right.

1. Give the correct direction for the following. Each letter's angle is 10°.
A. * Arrow $\mathrm{A}=$
C. Arrow $\mathrm{D}=$
E. Arrow $\mathrm{F}=$
B. * Arrow $\mathrm{B}=$
D. * Arrow E =
F. Arrow $\mathrm{G}=$

2. * Being sure that your calculator is in degrees, calculate x and y .

3. Slim Jim drops a ball from 4 m up. (Use the "Freefall" notes.)
A. Jim is holding onto the ball to begin with, so what is its initial velocity?
B. * Since the ball is DROPPED, what is Δy for the ball?
C. What is the acceleration of a dropped ball?
D. * Use a kinematic equation to solve for the time the ball is in the air. (Show variables, etc)
4. What is a vacuum?
5. In a vacuum, which would fall faster: a brick or a leaf?
6. An object is thrown into the air going $15 \mathrm{~m} / \mathrm{s}$. You want to know how high up it goes.
A. Is its displacement going to be + or - ?
B. What will be its final velocity at the very top?
C. * How high does it go?

You should remember that the slope of a position vs time graph is velocity. Why? Because velocity is about change of position. If your change of position is + , your velocity is + , etc.
8. Label each of the following line segments (three per graph) as: rest,+ slow,+ fast,- slow, - fast.

Time
(B) Position vs. Time

Time
(C) Position vs. Time

Time
(D) Position vs. Time

D. The velocities are
becoming less \qquad becoming more \qquad ,
B. The velocities are becoming more \qquad -, or less \qquad _. or less \qquad .
C. The velocities are becoming less \qquad or more ,
\qquad .
or more \qquad .
9. Which of the above graphs show positive acceleration?
10. Which of the above graphs show negative acceleration?

