- A. Is the car at the right moving left or right?
 B. Is this the + or x direction?
 - C. What is the ΔD for the object?
 - (Use the same part of the car to measure.) D. What is the ΔT ?
 - E. What is the speed of the object?
 - F. (Careful) What is the velocity of the object?

- Assuming right is positive, which line segment or line segments...
- A. Shows the fastest speed?
- B. Shows an object moving to the right?
- C. Shows an object moving to the left?
- D. Shows an object at rest?
- E. Shows positive velocity?
- F. Shows negative velocity?

From the "Acceleration" Notes: What are the two ways you know an object is accelerating?

The symbol " Δ " is delta and means "change of". Δ always equals final – initial. So, $\Delta x = x_f - x_i$ and $\Delta v = v_f - v_i$. Also, remember that left is negative and right is positive for velocity and position.

4. An object is moving 30 m/s to the right. After 5 seconds it is moving 10 m/s to the left.

- A. *Vi = B. *Vf = C. t =
- D. * Calculate the acceleration of the object.
- 5. An object is moving 25 m/s to the left. After 8 seconds it is moving at only 12 m/s to the left.
 - A. $V_i =$ B. $V_f =$ C. t =
 - D. Calculate the acceleration of the object.

- 9. An object moves 24 m to the right in 6 seconds and then 10 m to the left in 2 seconds.
 - A. * What is the total distance traveled?
 - B. Calculate the average speed of the object for the journey.
 - C. * What is the total displacement of the object (*remember* + s and -s)?
 - D. Calculate the average velocity of the object.
 - E. What is the instantaneous speed 3 seconds into the journey?

Answers: 4A) +30 m/s	4B) -10 m/s	4C) 5sec	4D) -8 m/s ²
9A) 34 m	9C) 14 m		