
E. Calculate the frequency of red light in the transparent substance.
F. * Calculate, draw, and label the angle of refraction for red light in the transparent substance.
G. * Which bent more: red or blue light?

From your "Lens/Mirror Equation and Magnification" notes:
3. A. Label the diagram with $\mathrm{p}, \mathrm{q}, \mathrm{h}$, and h'. Be sure to mark them with + or - .
B. Is the image real or virtual?
C. Why?
D. Will the magnification be a positive or negative number?
4. From the diagram (use centimeters):
A. $p=\quad q=\quad h=$
B. * Calculate the focal length of this lens.
C. Calculate the magnification.

2011-12 PreAP Light 7-p. 2

TAKS-A periodic table is given here for your convenience and enjoyment.
5. (Day 16) Find the following:
A. Oxidation \# for Calcium:
B. Valence Electrons for Chlorine:
C. Is potassium a metal or nonmetal?
D. Number of protons for Bromine?
E. Number of electrons gained or lost by Nitrogen.
F. An isotope of magnesium will have

1 H	2A		13A	14A	15A	16A	17A	2 He
3	4		5	6	7	8	9	10
Li	Be		B	C	N	O	F	Ne
11	12		13	14	15	16	17	18
Na	Mg		Al	Si	P	S	Cl	Ar
19	20	Transition Metals	31	32	33	34	35	36
K	Ca	Transition Metals	Ga	Ge	As	Se	Br	Kr

An Aluminum atom loses 3 electrons (as is its wont [its tendency]).
G. * How many electrons would it have?
H. * What would be its charge?
I. * Write the formula for the balanced ionic compound formed between Aluminum and Sulfur.

A Chlorine atom gains 1 electrons, as is its wont.
J. How many electrons would it have?
K. What would be its charge?
L. Write the formula for the balanced ionic compound formed between Chlorine and Boron.

2A) $v=c / n=2.14 \mathrm{E} 8 \mathrm{~m} / \mathrm{s} \quad$ 2B) find freq first $3.21 \mathrm{E}-7 \mathrm{~m}$
3D) Snell's law: $\theta_{2}=33.2$ degrees 3 F) $\theta_{2}=36.1$ degrees $\left.3 G\right)$ which bent MORE toward the normal?
4A) $\mathrm{p}=20 \mathrm{~cm}$ q $=30 \mathrm{~cm} \quad$ 4B) 12 cm use the $1 / \mathrm{p}+1 / \mathrm{q}$ equation.
5G) Al so 13 p and 13 e. So $13-3=10$ e
$5 \mathrm{H})+13-10=+3$ charge (Same as the oxidation \#.....hmmm)

Q1) 63 degrees
Q5) 33.7 degrees

