PreAP Light and Optics 5

- 1. A substance has an index of refraction of 2.
 - A. * Calculate the speed of light in that substance.
 - B. How does the speed of light in the substance compare with that of the speed of light in a vacuum?
- 2. So, (quickly, now), light travels 1×10^8 m/s in a substance. What is its index of refraction?
- 3. 450 nm light traveling in air then passes into a tray of water, as shown. This time, I will walk you thru this.
 - A. What part of the light wave is the same as it passes into water?
 - B. *Calculate the frequency of the light in air.
 - C. * Calculate the speed of light in the water (*find n for water on the "Refraction" notes*).
 - D. * Calculate the frequency of the light in the water.
 - E. Calculate the wavelength of the light in the water.
 - F. Sketch the path of the light as it enters and exits the water tray.
 - G. Calculate the angle that the light refracts in the water.
 - H. At what angle will the light reflect off the surface?

4. Slim Jim is waving hello to you. (He's a good guy!) Just so happens that he is standing next to a mirror. Draw the image of Jim you see in the mirror. (*Think about what you see in your mirror at home.*)

Let's start using a new equation...

- 5. * A light wave has a frequency of 4×10^{15} Hz. How much energy does each photon have?
- 6. * Photon I has a wavelength of 350nm. Use $v = f\lambda$, solve for frequency, substitute into the formula and solve for energy of the photon.
- 7. Photon II has a wavelength of 700 nm. How much energy is Photon II?
- 8. Photon I or Photon II had more energy?
- 9. Which of the following photons would have more energy?
 - A. Long wavelength or short wavelength?
 - B. High frequency or low frequency?
- C. Blue or red light? (See "Light" notes)
- D. Photon III or Photon IV at the right?

Photon III

Photon IV