Heat and Thermo 9

1.	When you are hot your body sw The liquid water on y your skin is c down. For the water, it e fr h The left over water is therefore cooler and at a lower from your skin. This is why e is a c	om a li to a g t, drav	, which requires		
2.	* A gas is compressed and 1500 J of work is done on the gas. During this process 1800 J of heat is added to the system. What is the change of internal energy of the system?				J
3.	Ice (a cold reservoir) is put around a piston so that the exchange of heat is 1200 J. The piston is pulled out doing 800 J of work. What is the change of internal energy of the system?				
4.	In an isovolumetric process, heat is added to the piston. If the i much work was done on the gas?	nternal energy changes b	oy 45000 J, how		
	Let's imagine a Teddy Bear Machine. On the front side of the machine are stacks of stuffing and buttons and furry fabric to be put into the machine. This is all useful "stuff", since it can be made into Teddy Bears. The final Teddy Bears are more organized than the materials from which they are made. After the manufacture of the Teddy Bears there is also "stuff" laying around the machine: pieces of fabric, etc.				
5.	 A. Is there more "stuff" before or after the creation of the Teddy Bears? B. Is there more or less refuse (garbage) after the Teddy Bears are made? C. The machine itself also used electricity or g and creates h D. Is heat more or less useful than the power source of the machine? <i>The "stuff" (the materials) represents "energy". The organization or usefulness is "entropy".</i> E. In any process the amount of energy increases, decreases, or stays the same? F. In any natural process the amount of useful energy: G. In any natural process the amount of entropy: 				
		Heat Engine		Refrigerator	
		Q_{Hot}		Q_{Hot}	
6.	On the heat engine diagram, label the boiler, pis- ton, and radiator. Refer to the previous homework, if necessary.		= W + Q _C		
7.	On the refrigerator diagram, label the inside of the refrigerator (inside), the compressor, and the outside of the refrigerator.				W _{In}
8.	Q_H , Q_C , W or ΔU ?	Q_{Cold}		Q_{Cold}	
	A* Heat removed by the coils outside of a refrigerator BWhen the refrigerant passes thru the expansion value			A. Q _H E. Q _H	

- When the refrigerant passes thru the expansion valve of a refrigerator. Β.
- C. _ Heat absorbed by the refrigerant inside the refrigerator.
- D. Changes inside the compressor of a refrigerator. 1500 J of energy is added at the boiler of a heat engine. 600 J is lost when the steam is cooled. 900 J of useful energy is produced by the engine.
- * 1500 J E. ____
- 600 J F.
- G. __ 900 J
- * Is 0 for a cyclic process. H.
- * Is 100% both diagrams. I.
- * Is the "lost" energy in a heat engine. J.
- $_$ * Can never be as big as $Q_{\rm H}$. K.

H. ΔH

(big arrow)

J. Q_C (this is the

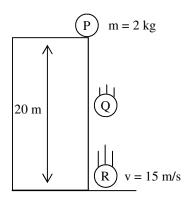
part of Qh

do work)

K. W, must have

that doesn't

Q_C to recom-


press the gas.

I. $Q_{\rm H}$

PreAP Heat 9—p2

Let's remind ourselves about efficiency.

9. An object falls off of an 20 m tall ledge. We will assume that point Q is half way down.

$$Eff = \frac{W_{out}}{W_{in}} \times 100$$

- A. Calculate the energy of the object at the top. Use $g = 10 \text{ m/s}^2$.
- B. Calculate the energy at the bottom.
- C. Give a logical reason why these are not the same.
- D. Efficiency is what you get out of a process divided by what you put into a process. Divide what you ended up with by what you started with.
- E. * You ended up with a decimal. To make it a percent: multiply by 100. This is the efficiency of this process.