

1. A moving ball hits a wall and bounces back. Let's imagine that the wall is on a friction-
 less surface, so it can slide, and that the ball is heavy enough that it can move the wall. Slim Jim keeps the wall from falling over.
A. * Since the ball moves to the right after hitting the wall, the direction of the wall's normal force on the ball is:
B. * The direction of the ball's force on the wall is:
(And the ball is going the same speed as before, assuming an elastic collision. 0 W on the ball.)
2. Then Slim Jim pushes the wall toward the ball. The ball still ricochets off the wall.
A. The direction of the wall's normal force on the ball is:
B. The direction of the ball's force on the wall is: (And the ball picks up speed, like a ball hit by a racket or bat. $+W$ done on the ball.)
3. Now Jim pulls the wall away from the ball. Of course, the ball still ricochets back off the wall.
A. The direction of the wall's normal force on the ball is:
B. The direction of the ball's force on the wall is:
(And the ball loses speed. This is how a tennis player catches a tennis ball: they move their racket backwards with the ball, slowing the ball down. - W done on the ball.)

Now we change from a wall to a piston and gas molecules instead of a ball. And the forces work exactly the same: the molecules bounce off the piston, so THE PISTON ALWAYS PUSHES DOWN (or in). And THE GAS MOLECULES
ALWAYS PUSH UP against the piston, since their pressure is what keeps the piston from falling without an outside force.
4. In diagram I the piston is moving down. In diagram II the piston is moving up. Diagram I or II (or both)?

A. ___ * The force of the piston is down.
B. ___ The force of the gas is up.
C. __ * F and d for the piston are in the same direction.
D. __ F and d for the gas are in opposite directions.
E. ___ $\quad *+\mathrm{W}$ is done by the gas (by the system-the gas is the system).
F . __ * -W done by the piston (on the system, on the gas).
G. $\quad \ldots+\mathrm{W}$ is done on the system.
H. __ * The gas's temperature increases.
I. _-_ The gas's temperature decreases.

5. A 3 kg copper mass $\left(\mathrm{c}_{\mathrm{p}}=387\right)$ is heated to $120^{\circ} \mathrm{C}$. It is then placed into a well insulated container with 4 kg of water at $15^{\circ} \mathrm{C}$.
A. Heat always travels from \qquad to \qquad .
B. Which object will lose energy?
C. Which object's temperature will go up?
A. Hot to cold.
D. Will the final temperature of the water be above, below, or at $15^{\circ} \mathrm{C}$?
E. Since the copper loses heat, where does the heat go?
C. Water
D. Above (it
gains Q)
F. Since the container is well insulated, the amount of energy lost to the outside of
E. the container is: After a while the two objects come to thermal equilibrium at $21.8^{\circ} \mathrm{C}$.
F. 0J
G. What is the change of temperature for the copper?
H. Calculate the amount of heat gained or lost by the copper.

PreAP Heat 3-p2

6. The Celsius thermometer below is used to measure the temperature of 2 kg of water. We will assume that the water is at normal atmospheric pressure.

A. Label the boiling point and freezing point of water.
B. Label the phases of water on the thermometer.
C. Label the Cp's for the different phases of water.
D. Label the present reading as T_{1}.
E. In what phase is water at this temperature?

We want to lower the 2 kg of water to $-10^{\circ} \mathrm{C}$.
F. Mark the desired temperature as T_{2}.
G. What is the lowest temperature water will stay steam?
H. What will be the change of temperature during its gaseous phase $\left(\Delta \mathrm{T}_{\text {steam }}\right)$?
I. Calculate the heat change for the water to lower it to $100^{\circ} \mathrm{C}$.
ize it into liquid water. $Q=m L_{\text {vaporization }}$ and $L_{\text {vapor for water }}= \pm 2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}$.
J. How much heat must be removed to UNvaporize (condensate) the 2 kg of water to liquid water?
K. What will be the initial temperature of this water when it has turned to liquid?

Now this liquid water needs to be cooled to $-10^{\circ} \mathrm{C}$.
L. But what is the lowest temperature for liquid water?
M. What will be the change of temperature of this water during its liquid phase $\left(\Delta \mathrm{T}_{\mathrm{liquid}}\right)$?
N. Calculate the heat added or removed from the liquid water to lower it to $0^{\circ} \mathrm{C}$.

Of course, now you have to convert it to ice. The equation is $Q=m L_{\text {fusion }}$ and $L_{\text {fusion for ice }}=$ $\pm 3.33 \times 10^{5} \mathrm{~J} / \mathrm{kg}$. It is + when melting and - when freezing.
O. Calculate the total heat added or removed to freeze the water at $0^{\circ} \mathrm{C}$.
P. Now how much heat is added or removed to lower the water from $0^{\circ} \mathrm{C}$ to $-10^{\circ} \mathrm{C}$?
Q. Now calculate the total heat added or removed to change 2 kg of ice from $140^{\circ} \mathrm{C}$ to $-10^{\circ} \mathrm{C}$
$1 \mathrm{~A}) \rightarrow \quad 1 \mathrm{~B}) \leftarrow$
4A) both
4C) I
4E) II (gas pushes up and moves up)
4F) II (piston pushes down, but moves up)
4G) I
4H) I (gas is compressed)

