Heat and Thermo 2

- 1. Conduction (Cd), Convection (Cv), Radiation (R):
 - A. ____ *Always moves up.
 - B. ____ *Can move any direction.
 - C. ____ Always moves from hot to cold.
 - D. ____ Between a pot and the stove.
 - E. ____ Between the pot and the water.

2. An ice cube is in a freezer. Draw an arrow

between them if they are both at -5° C.

to show the direction of heat transfer

- F. ___ Moves heat throughout the water.
- G. __ How heat enters an egg in the water.
- H. ____You lift the pot and put your hand next to (but not touching) the side of the pot. You can feel the heat because of this.

- 3. Heat moves from L to K.
 - A. Which object is at a higher T?

Κ

Q

- B. Which object has slower moving atoms?
- C. What kind of heat transfer is this?

- 4. An ice cube is placed on your skin.
 - A. Does heat go into or out of your skin?
 - C. * Is this an endothermal or exothermal process for your skin?
 - D. Is Q + or for the ice cube? E. Is this an endothermal or exothermal process for the ice cube?

B. Is Q + or - for your skin?

Temperature scales:

- 5. * Convert 20°C to F.
- 6. * Convert 50°F to C, then to Kelvin.
- 7. A. Fill in the table at the right.
 - B. * So $___^{\circ}F = ___^{\circ}C.$
 - C. Reduce these numbers to the lowest values.
 - D. So _____F° = ____C°.

	Boiling point	Melting point	Difference
Fahrenheit			
Celsius			

This where the conversion equations come from: y = mx + b, m = 9/5 and $b = 32^{\circ}$.

8. * Using the above information, how many Celsius degrees is 40 Fahrenheit degrees?

Specific Heats (Cp) and Latent Heats (L's) are on the notes.

- 9. 1000 J of heat is added to three different substances at 40°C: 1 kg of copper; 1 kg of Aluminum; 1 kg of liquid water.
 - A. * Calculate the final temperature of the copper.
 - B. Calculate the final temperature of the aluminum.
 - C. Calculate the final temperature of the water.
 - D. Which material increased its temperature the most?
 - E. * Which material is the best insulator?
- 10. Two unknown substances: Material X has a specific heat of 2488. Material Y has a specific heat of 340.
 - A. Which one is the better conductor?
 - B. If the same amount of heat is added and both start at the same initial temperature, which substance will end up at a higher final temperature?

11. The Celsius thermometer below is used to measure the temperature of 5 kg of water. We will assume that the water is at normal atmospheric pressure.

°C ⊓	A. Label the boiling point of water. Use an arrow and a label.	А.	100° C
	B. Mark and label the freezing point of water.	В.	0°C
<u>160</u>	C. Label the three most common phases of water on the thermometer.	C.	
<u>140</u>	Label them ice, liquid water, and steam (since they are all still water).		
<u>120</u>	D. Label the Cp's for the different phases of water.	D.	See HW1 or "Heat" notes
100	E. Label the present reading as T_1 .	E.	
80	F. In what phase would water be at this temperature?	F.	Liquid (between
60			0 and 100°C)
40 -	We want to raise the 5 kg of water to 120° C.		
40	G. Mark the desired temperature as T_2 .	G.	
<u>20</u>	H. What is the highest temperature this water will stay liquid?	H.	100°C
<u> </u>	I. What will be the change of temperature during its liquid phase	I.	Tf–Ti =
	$(\Delta T_{liquid})?$		$(100-30) = 70^{\circ}C$
<u>-40</u>	J. Calculate the heat added from the water to raise it to 0°C.	J.	$Q = mc_{p \text{ water}} \Delta T$ = 5(4186)(70) = 1.465E6 J
Now the 3 kg o	f water is at 100° C At this point heat must be added to it to vanorize it into steam		
This heat is kno	where is a 100 °C. At this point near mass be dated to it to vaporize it into steam. we as "latent heat of vaporization". The equation is $O = mL_{vaporization}$ and		
$L_{vapor for water} = \pm$	2.26×10^6 J/kg. It is + when boiling and –when condensating (back to liquid).		

K.	How much heat must be added to vaporize 5kg of water into steam?	K.	5(2.26E6) = 1.13E7 J (+ since boiling)
L.	What will be the initial temperature of this water when it has turned to steam?	L.	100°C
M.	What will be the change of temperature of this water during its gaseous (steam) phase $(\Delta T_{\text{steam}})$?	M.	+20°C
N.	Calculate the heat added to the steam to raise it to 120°C.	N.	$Q = mc_{p \text{ steam}}\Delta T$ = 5(2010)(20) = 2.01E5J
0.	Calculate the total heat added to the water to raise it from 30° to 120°C.		
		О.	Add em up:

1.3E7J

1A: convection; 1B: conduction; $Q5:68^{\circ}F$ Q6: 10°C (figure out K) Q7B: 180°F = 100°C Q8: 40F(5C/9F) = 22.2 C degrees 9A: 42.6°C 9E. Water (highest Cp)